

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII(NEW) EXAMINATION - SUMMER 2019

Subject Code:2180507	Date:09/05/2019
----------------------	-----------------

Subject Name: Transport Phenomena

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Discuss Classification of transport processes.	03
	(b)	Discuss the importance of studying transport phenomena.	04
	(c)	State and explain Newton's Law of viscosity and discuss how it is analogous with Fourier's Law of heat conduction and Fick's Law of binary diffusion.	07
Q.2	(a)	Discuss about the conservation laws	03
Q.2	(b)	Discuss about shell momentum balance and boundary conditions in general.	04
	(c)	Derive velocity distribution for a flow of a falling film. OR	07
	(c)	Discuss Navier-Stokes equation in Cylindrical co-ordinate.	07
Q.3	(a)	Give brief introduction about equimolar counter diffusion.	03
	(b)	Derive the equation of continuity.	04
	(c)	Derive flux equation of diffusion of A through non-diffusing B.	07
		OR	
Q.3	(a)	Explain Fick's law of binary diffusion.	07
	(b)	Find the temperature distribution for heat conduction due to the	07
		viscous heat dissipation for flow of an incompressible Newtonian	
		fluid between two concentric cylinders.	
Q.4	(a)	Discuss Fourier's Law of heat conduction in brief.	03
	(b)	A copper wire has a radius of 2 mm and a length of 5 m. For what	04
		voltage drop what the temperature rise at the wire axis be 10 °C,	
		if the surface temperature of wire is 20 °C?	
	(c)	Discuss heat conduction with chemical heat source.	07
0.4	()	OR	0.2
Q.4	(a)	Discuss about temperature and pressure dependency of thermal conductivity.	03
	(b)	Discuss in brief about heat conduction in a cooling fin	04
	(c)	Discuss heat conduction with electrical heat source.	07
Q.5	(a)	Define mass and molar average velocities.	03
	(b)	Explain in brief about theory of diffusion of polymer	04
	(c)	Discuss about diffusion through a stagnant gas film.	07
		OR	
Q.5	(a)	Define mass and molar concentrations.	03
	(b)	Discuss the significance of momentum, thermal and mass	04
		diffusivities.	
	(c)	Define concentrations, velocities and mass fluxes with reference	07
		to mass transport.	
