

www.FirstRanker.com

Enrolwent. FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII(NEW) EXAMINATION - SUMMER 2019

Subject Code:2183507

Date:15/05/2019

Subject Name:Design of Treatment Plants Time:10:30 AM TO 01:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

Q.1	(a)	Differentiate unit operations & unit process. Quote one example of each.	03
	(b)	Explain impacts of improper storm water management.	04
	(c)	Determine terminal settling of a sand particle with an average diameter of	07
		0.5mm and density of 2600 kg/m ³ settling in water at 20 C. (viscosity = 1.01	
		$* 10^{-3} \text{ Ns/m}^2$	
Q.2	(a)	Define Sedimentation. Also explain the following terms.	03
		1. Discrete Settling	
		2. Flocculent Settling	
		3. Zone Settling	
	(b)	Explain treatability study of activated sludge process.	04
	(c)	Using Rankin's method and assuming suitable design criteria, design a high	07
		rate trickling filter to treat 10 MLD flow of domestic waste water having	
		settled BOD of 200 mg/l.	
		Design Criteria & Assumptions:	
		a) Concentration of desired effluent $BOD = 30 \text{ mg/l}$	
		b) Depth of filter media = 2 m	
		d) Assume organic loading as 1 kg BOD/ d m3 volume of filter	
		OR	
	(c)	Using the Velz equation, determine the filter depth of a low rate trickling	07
		filter, if settled ultimate BOD is 100 mg/L and desired BOD ₅ is 20 mg/L.	
		(Let's assume $BOD_5 = 68\%$ of Ultimate BOD, Removable effluent BOD =	
		95% and k=0.18) find C, Cnr, CD and D.	
Q.3	(a)	With the help of a neat sketch explain working of UASBR.	03
	(b)	Explain working of clarifier with its neat sketch.	04
	(c)	A water treatment plant has a flow rate of 0.6 m ³ /sec. The settling basin at	07
		the plant has an effective settling volume that is 20 m long, 3 m tall and 6	
		m wide. Will particles that have a settling velocity of 0.004 m/sec be	
		completely removed? If not, what percent of the particles will be removed?	
		How big would the basin need to be to remove 100% of the particles that	
		have a settling velocity of 0.004 m/sec?	
		OR	
Q.3	(a)	Explain treatment plant of surface water with its neat sketch.	03
	(b)	Write a diagram for scale up.	04
	(c)	Design a PST to treat domestic wastewater with flow of 250 LPCD of a	07
		town having 5 lakh populations.	

FID	Strank	Assume following data: 1 www.generation = 80% of water consumption www.FirstRanker.	com
		2. $s s$ in water - 250 mg/l	
		3 BOD: 20° c of ww - 200 mg/l	
		5. $BOD_5 20 \text{ c of } ww = 200 \text{ mg/r}$ 4. $SIR = 40 \text{ m}^3/\text{m}^2 \cdot \text{d}(\text{daily of avg. flow})$	
		$-100 \text{ m}^3/\text{m}^2 \cdot \text{d(daily of neak flow)}$	
		5 Detention time $= 2$ hr	
0	4 (a)	5. Detention time – 2 m Explain membrane system in cleaner production	03
٧·	• (a) (b)	Draw a water quality diagram for DO sag curve	03
	(b) (c)	Assume flowing design criteria for DAE thickener to increase the conc. of	07
	(C)	Assume howing design enterna for DAP therefore to increase the cone. of activated sludge solid from $0.25 - 4.5\%$	07
		SI $\mathbf{P} = 10 \text{ m/day}$	
		Sludge flow rate $= 450 \text{ m}^3/\text{d}$	
		Operating temperature $= 30$ degree Celsius	
		Air solubility S'a = $15.7 \text{ m}/l$	
		A/S = 0.02 m/mg	
		Recycled system pressure $P = 300$ kpascal	
		OR	
0.4	4 (a)	Explain different screens with their mesh size.	03
×.	(b)	Explain onsite treatment process for pharma sector.	04
	(°)	Narrate any two example of ZLD in chemical industry.	07
O .	5 (a)	Explain data analysis for waste water characteristics.	03
C	(b)	Write a note on secondary settling tank.	04
	(c)	Write a note on multi-effect evaporator.	07
		OR	
Q.	5 (a)	What is a working of grit chamber?	03
_	(b)	Write a note on trickling filter.	04
	(c)	On which mechanism neutralization and equalization tank works? What is	07
		a difference and similarities between them?	

		2 ⁿ	
		all'	