03

04

07

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII(NEW) EXAMINATION - SUMMER 2019

Subject Code:2183607 Date:15/05/2019

Subject Name:Process Instrumentation, Dynamics & Control

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	_	-	
			MARKS
Q.1	(a)	Mention the following terms relating to control system	03
	. ,	(i) set point tracking (ii) disturbance rejection (iii) block diagram	
	(b)	Write a short note on characteristics of laplace transform mentioning	04
		it for input of unit step function.	
	(c)	Find the laplace transform of function x(t) that satisfies the	07
		differential equation and initial conditions	
		$\frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} - \frac{dx}{dt} - 2x = 2$	
		x(0) = 1, $x'(0) = 0, x''(0) = -1$	
Q.2	(a)	State and prove final value theorem.	03
	(b)	Write the systematic procedure for determining transfer function of a	04
		process.	
	(c)	A thermometer exhibiting first order dynamics having a time constant	07
		of 5 sec is at a steady state temperature of 25° C. At time $t = 0$, the	
		thermometer is placed in a temperature bath at 70 °C. Show that value	
		of response reaches 63.2 % of its ultimate vale when time elapsed is	
		equal to one time constant.	
		OR	
	(c)	Derive the transfer function of first order system of mercury in	07
		thermometer mentioning assumptions involved.	
Q.3	(a)	A control system is subjected to a step change of magnitude 10. The	03
		transfer function of the control system is expressed as	
		$G(s) = \frac{6}{0.9s^2 + 0.3s + 10}$	
		$0.9s^2 + 0.3s + 10$	
	<i>(</i> 1)	Calculate (i) overshoot (ii) Radian frequency (iii) Decay ratio	0.4
	(b)	Mention characteristic features of an underdamped second order	04
		system for a step forcing function.	07
	(c)	Derive the transfer function relating head to that of flow rate for liquid	07
		level system connected in a noninteracting manner	
		OR	

Derive the step response of an underdamped second order system.

1. The error is subjected to a linear change of 3 °C/min. Obtain

(b) Describe a second order system. Mention how the response in such a

Q.3 (a) A PI controller with integral time τ_I 1 min having a sensitivity $K_C =$

system varies with variables characterizing the system.

response equation of controller.

www.FirstRanker.com

www.FirstRanker.com

Q.4	(a)	y y	03
	(b)	1 1	04
	(-)	gain will reduce the value of offset.	Λ7
	(c)	· / · /	07
		the figure $X \longrightarrow G_b \longrightarrow G_c \longrightarrow G_a \longrightarrow Y$	
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
		OR	
Q.4	(a)		03
	(b)	Mention the rule for plotting root locus diagram for a negative feedback system.	04
	(c)	Obtain the response of a regulator problem for a change in load variable.	07
Q.5	(a)	Mention various laws of thermoelectricity.	03
	(b)		04
	(c)	Describe various static and dynamic characteristics of measuring	07
		instruments.	
o =		OR	
Q.5	(a)	•	03
	(b)		04 07
	(c)	flow deriving the equation for discharge.	U /
