FirstRanker.com

www.FirstRanker.com

Enrolwww.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2140606

Subject Name: Numerical and Statistical Methods for Civil Engineering **Total Marks: 70**

Date:22/11/2018

03

Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 In usual notations show that $\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Lambda}$ **(a)**
 - polynomial which (b) Find the cubic 04 takes on the values f(0) = 4, f(1) = 1, f(2) = 2, f(3) = 11, f(4) = 32, f(5) = 71. Also find f(6)and f(2.5).
 - (c) Obtain by Power method the numerically largest eigen value of the matrix 07 $\begin{bmatrix} 15 & -4 & -3 \end{bmatrix}$

$$A = \begin{bmatrix} -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$$

- Q.2 In how many different ways can the director of a research laboratory choose 2 03 (a) chemists from among 7 applicants and 3 physicists from among 9 applicants?
 - A class consists of 6 girls and 10 boys. If a committee of three is chosen at random 04 **(b)** from the class, find the probability that, (i) three boys are selected; (ii) exactly two girls are selected.
 - Solve the following system of equations using Gauss Jacobi iteration method: 07 (c) $4x_1 + x_2 + x_3 = 2; \quad x_1 + 5x_2 + 2x_3 = 6; \quad x_1 + 2x_2 + 3x_3 = -4$
 - At checkout counter customers arrive at an average of 2.0 per minute. Find the 07 (c) probabilities that
 - At most 3 will arrive in any given minute (i)
 - At least 3 will arrive during an interval of 4 minutes (ii)
 - At most 10 will arrive during an interval of 6 minutes. (iii)
- (a) Using Regula Falsi method determine the root of the equation $x \log x = 1.2$. 03 Q.3
 - 04 (**b**) Use Euler's method to solve the initial value problem $\frac{dy}{dx} = \frac{x - y}{2}$ on the interval

[0,3] with y(0) = 1. Compare the numerical solution with exact solution for the step size h = 0.25.

07 (c) Using Runge – Kutta fourth order method solve $\frac{dy}{dx} = y - \frac{2x}{y}$; y(0) = 1. Evaluate the value of y when x = 0.2 x = 0.4, take step size 0.2.

Q.3 (a) Using Taylor's series method, find y(1.1) correct to four decimal place, given by 03 $\frac{dy}{dx} = xy^{\frac{1}{3}}; y(1) = 1.$

www.FirstRanker.com

www.FirstRanker.com⁰⁴

04

03

03

dxEvaluate rule taking eleven ordinates and hence find the - by Simpson's $\frac{1}{0}1 + x$

value of $\log_{\rho} 2$ correct to five significant digits.

rstRanker.com

stranker's choid

х f

(b)

Use Newton's divided difference method to evaluate f(4) from the below data: 07 (c)

				•
	0	1	2	3
(x):	2	3	12	147

The runs scored by two batsmen A and B in 9 consecutive matches are given 03 **Q.4** (a) below. Find which batsman is more consistent?

А	85	20	62	28	74	5	69	4	13
В	72	4	15	30	59	15	49	27	26

- (b) Derive an iteration formula for $\sqrt[3]{N}$ and hence find $\sqrt[3]{58}$.
- (c) Solve the following system of equation using Gauss Seidel method: 07 5x + y - z = 10; 2x + 4y + z = 14; x + y + 8z = 20

OR

0.4 (a)

Find the mean a	nd stand	ard devia	ation for t	he follow	ing data:		
Class Interval	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	6	14	10	8	1	3	8

- **(b)** Find the equation of the cubic curve which passes through the points (0, -5), 04 (1,-10), (2,-9), (3,4), and (4,35).
- Solve the following system of equations using Gauss elimination method with (c) 07 x + y + z = 7; 3x + 3y + 4z = 24; 2x + y + 3z = 16partial pivoting.

90-120 0-30 30-60 60-90 120-150 150-180 Class limits Frequency 8 13 22 27 18 7

Compute the correlation coefficient between X and Y using the following data: 04 **(b)** 2 4 5 6 8 11 18 12 10 8 7 5

(c) Following table gives the data on rainfall and discharge in a certain river. Obtain 07 the line of regression of Y on X. Doinfall(inch) V. 2.60 2.05 1 70 2.42 1 52

		OR			
Discharge(1000cc) Y:	33.5	36.3	40.0	45.8	53.5
Kainiali(inch) X:	1.55	1./8	2.00	2.95	3.42

0.5 A train is moving at the speed of 30 m/s suddenly brakes are applied. The speed 03(a) of the train per second after t seconds is given by the following table:

Time(t)	0	5	10	15	20	25	30	
Speed(v)	30	24	19	16	13	11	10	
Apply Simpson's 3/8 th rule to determine the distance moved by the train 30 sec.								

- An unbiased coin is tossed 6 times. Find the probability of getting (i) exactly 4 **(b)** 04 heads, (ii) at least 4 heads.
- At constant temperature, the pressure P and the volume V of a gas are connected 07 (c) by the relation PV^{γ} = constant. Find the best fitting equation of this form to the

following data and estimate V when P=4

onowing data and estimate v when I = 1.									
P(Kg. Sq. cm)	0.5	1.0	1.5	2.0	2.5	3.0			
V(cc)	1620	1000	750	620	520	460			
