GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2140606
Date:22/11/2018

Subject Name:Numerical and Statistical Methods for Civil Engineering
 Time: 02:30 PM TO 05:00 PM

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) In usual notations show that $\Delta+\nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}$
(b) Find the cubic polynomial which takes on the values 04 $f(0)=4, f(1)=1, f(2)=2, f(3)=11, f(4)=32, f(5)=71$. Also find $f(6)$ and $f(2.5)$.
(c) Obtain by Power method the numerically largest eigen value of the matrix
$A=\left[\begin{array}{ccc}15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2\end{array}\right]$
Q. 2 (a) In how many different ways can the director of a research laboratory choose 2 chemists from among 7 applicants and 3 physicists from among 9 applicants?
(b) A class consists of 6 girls and 10 boys. If a committee of three is chosen at random
from the class, find the probability that, (i) three boys are selected; (ii) exactly two girls are selected.
(c) Solve the following system of equations using Gauss Jacobi iteration method:

$$
\begin{gathered}
4 x_{1}+x_{2}+x_{3}=2 ; x_{1}+5 x_{2}+2 x_{3}=-6 ; x_{1}+2 x_{2}+3 x_{3}=-4 \\
\text { OR }
\end{gathered}
$$

(c) At checkout counter customers arrive at an average of 2.0 per minute. Find the probabilities that
(i) At most 3 willarrive in any given minute
(ii) At least 3 will arrive during an interval of 4 minutes
(iii) At most 10 will arrive during an interval of 6 minutes.
Q. 3 (a) Using Regula - Falsi method determine the root of the equation $x \log x=1.2$. 03
(b) Use Euler's method to solve the initial value problem $\frac{d y}{d x}=\frac{x-y}{2}$ on the interval $[0,3]$ with $y(0)=1$. Compare the numerical solution with exact solution for the step size $h=0.25$.
(c) Using Runge - Kutta fourth order method solve $\frac{d y}{d x}=y-\frac{2 x}{y} ; y(0)=1$.

Evaluate the value of y when $x=0.2 x=0.4$, take step size 0.2 .

OR

Q. 3 (a) Using Taylor's series method, find $y(1.1)$ correct to four decimal place, given by
$\frac{d y}{d x}=x y^{1 / 3} ; y(1)=1$.
www.FirstRadnker.com
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by Simpson's $\frac{\text { wwatrater.com }}{3} \quad$ rule taking eleven ordinates and hence find the value of $\log _{e} 2$ correct to five significant digits.
(c) Use Newton's divided difference method to evaluate $f(4)$ from the below data:

$x:$	0	1	2	3
$f(x):$	2	3	12	147

Q. 4 (a) The runs scored by two batsmen A and B in 9 consecutive matches are given below. Find which batsman is more consistent?

A	85	20	62	28	74	5	69	4	13
B	72	4	15	30	59	15	49	27	26

(b) Derive an iteration formula for $\sqrt[3]{N}$ and hence find $\sqrt[3]{58}$.
(c) Solve the following system of equation using Gauss - Seidel method:
$5 x+y-z=10 ; 2 x+4 y+z=14 ; \quad x+y+8 z=20$

OR

Q. 4 (a) Find the mean and standard deviation for the following data:

Class Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	6	14	10	8	1	3	8

(b) Find the equation of the cubic curve which passes through the points $(0,-5)$, $(1,-10),(2,-9),(3,4)$, and $(4,35)$.
(c) Solve the following system of equations using Gauss elimination method with
partial pivoting. $\quad x+y+z=7 ; 3 x+3 y+4 z=24 ; 2 x+y+3 z=16$
Q. 5 (a) Find the median from the following data.

Class limits	$0-30$	$30-60$	$60-90$	$90-120$	$120-150$	$150-180$
Frequency	8	13	22	27	18	7

(b) Compute the correlation coefficient between X and Y using the following data:

X	2	4	5	6	8	11
Y	18	12	10	8	7	5

(c) Following table gives the data on rainfall and discharge in a certain river. Obtain the line of regression of Y on X .

Rainfall(inch) X:	1.53	1.78	2.60	2.95	3.42
Discharge(1000cc) Y:	33.5	36.3	40.0	45.8	53.5
OR					

Q. 5 (a) A train is moving at the speed of $30 \mathrm{~m} / \mathrm{s}$ suddenly brakes are applied. The speed of the train per second after t seconds is given by the following table:

Time(t)	0	5	10	15	20	25	30
Speed(v)	30	24	19	16	13	11	10

Apply Simpson's $3 / 8^{\text {th }}$ rule to determine the distance moved by the train 30 sec .
(b) An unbiased coin is tossed 6 times. Find the probability of getting (i) exactly 4 heads, (ii) at least 4 heads.
(c) At constant temperature, the pressure P and the volume V of a gas are connected
by the relation $P V^{\gamma}=$ constant. Find the best fitting equation of this form to the following data and estimate V when $\mathrm{P}=4$.

P(Kg. Sq. cm)	0.5	1.0	1.5	2.0	2.5	3.0
V (cc)	1620	1000	750	620	520	460

