FirstRanker.com

www.FirstRanker.com

Enrolwww.FirstRanker.com

Total Marks: 70

03

04

03

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION – WINTER 2018

Subject Code:2140706 Date:01/12/2018 Subject Name:Numerical and Statistical Methods for Computer Engineering

Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss about mathematical modeling.
 - (b) Discuss various types of errors used for numerical calculations.
 - (c) Obtain cubic spline approximation for the function defined by the data given below for 07 the first two subintervals. Take $M_0 = M_3 = 0$.

x	0	1	2	3
f(x)	1	2	33	244

- Q.2 (a) Write an algorithm for Simpson's rule.
 - (b) Using Simpson's rule, find $\int_{0}^{0.6} e^{-x^2} dx$ taking seven ordinates. Show the calculations up 04 to four decimal places.
 - (c) Define divided difference. Using Newton's divided difference interpolation, find f(6) 07 from the following table:

x	1	2	7	8
f(x)	1	5	5	4
			<u> </u>	

- OR

- (c) Define interpolation. Using Lagrange interpolation, fit a second degree polynomial 07 passing through the points (0,0), (1,1) and (2,20).
- Q.3 (a) State Budan's theorem. Define diagonally dominant system with example. 03
 - (b) Use Newton-Raphson method to find a positive root of $x^3 + x^2 1 = 0$ correct up to four decimal places taking $x_0 = 1$.
 - (c) What do you mean by diagonally dominant system? Solve the following system of linear equations using Gauss-Seidel method: 9x + y + z = 10, 2x + 10y + 3z = 19, 3x + 4y + 11z = 0.

- **Q.3** (a) Explain geometrically the method of false position.
 - (b) Using Euler's method, find y(1) if $\frac{dy}{dx} = x + y$ and y(0) = 1. Take n = 10. 04
 - (c) Perform one iteration of the Bairstow method to extract a quadratic factor from the 07 polynomial $x^4 + x^3 + 2x^2 + x + 1$ with initial factor $x^2 0.5x 0.5$.
- Q.4 (a) Write the steps for engineering problem solving.

03

03

FR	irs	tRanl	ker.c	om									
	irstra	nker's cho	bice	www	.First	Ranke	r.com	4 9	,] www	v.Firstl	Ranke	r.com	
	(b)	Determine	the condition	on numb	er of tl	ne matr	ix 4	9 1	5				04
		Determine		in nume		ie man		16 2	5				
		[9 16 25]							05				
	(c)	State direct	t and iterat	ive meth	nods to	solves	system	of line	ar equa	tions. S	olve the	e	07
		following system of linear equations using Gauss elimination method:											
		x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40.											
						0	R						
Q.4	(a)	Write the formula for Runge-Kutta fourth order method.						03					
	(b)	Fit a second	degree poly	nomial to	the fo	llowing	data usi	ng leas	t square	method.			04
	(0)	у.	-3 -2	2	-1	0		1	2	3			04
		X	12 4		1	2		7	15	30)		
	(\mathbf{a})	Coloulate th	a first four		to of th	a falla	nina di	atribus	ion abo	ut tha m			07
	(C)	$\begin{bmatrix} x & 0 \end{bmatrix}$						stribu	1011 abo	ut the fi	8		07
		$f(\mathbf{x}) = 1$	8	28	56	70	56		28	3	1		
		<i>J</i> (<i>N</i>)	Ũ	20	20	,,,	20			5	1		
Q.5	(a)	Develop a (C program	to fit reg	gression	n line o	f y on	x thro	ough give	en set of	points u	ising the	03
	(b)	least square	method.	ution of	0.00	modity	ia airra	n hala					04
	(0)	Demand			a com		is give	$\frac{1}{8}$	w. 9		10		04
		Demand 5 0 7 0 7 10 Probability 0.05 0.10 0.30 0.40 0.10 0.05						5					
		Find expected demand.											
	(c)	For the following data, obtain trend values using five years moving average.							07				
		Year 20	00 2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	
		Value 3	1	14	8	10		14	12	16	20	25	
0.5	(9)	Discuss the	nitfalls of	Gauss e	limina	tion U	к О						03
Q	(b)	Define the	following	terms wi	ith exa	mplest	U						04
	()	1. Ill-conditioned system											
		2. Significant figure Obtain the correlation coefficient for the following data:											
	(c)								07				
		X	100	98	78		85	1	10	93	80		
		У	85	90	70		72	9	3	81	74		
				1.									
			£.,										
			2		***:	******	***						