

www.FirstRanker.com

Enrowww.FirstRanker.com

03

04

03

03

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2140706 Date:01/12/2018 Subject Name:Numerical and Statistical Methods for Computer Engineering

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss about mathematical modeling.

(b) Discuss various types of errors used for numerical calculations.

(c) Obtain cubic spline approximation for the function defined by the data given below for the first two subintervals. Take M₀ = M₃ = 0.

x	0	1	2	3
f(x)	1	2	33	244

Q.2 (a) Write an algorithm for Simpson's rule.

(b) Using Simpson's rule, find $\int_{0}^{0.6} e^{-x^2} dx$ taking seven ordinates. Show the calculations up 04

to four decimal places.

(c) Define divided difference. Using Newton's divided difference interpolation, find f(6) 07 from the following table:

x	1	2	(D)	8
f(x)	1	5	5	4

ÓR

- (c) Define interpolation. Using Lagrange interpolation, fit a second degree polynomial 07 passing through the points (0,0), (1,1) and (2,20).
- Q.3 (a) State Budan's theorem. Define diagonally dominant system with example.
 03
 - (b) Use Newton-Raphson method to find a positive root of x³ + x² -1 = 0 correct up to four decimal places taking x₀ = 1.
 - (c) What do you mean by diagonally dominant system? Solve the following system of linear equations using Gauss-Seidel method:

9x + y + z = 10, 2x + 10y + 3z = 19, 3x + 4y + 11z = 0.

OR

Q.3 (a) Explain geometrically the method of false position.

(b) Using Euler's method, find y(1) if $\frac{dy}{dx} = x + y$ and y(0) = 1. Take n = 10.

- (c) Perform one iteration of the Bairstow method to extract a quadratic factor from the 07 polynomial x⁴ + x³ + 2x² + x + 1 with initial factor x² 0.5x 0.5.
- Q.4 (a) Write the steps for engineering problem solving. 03

www.FirstRanker.com 4 9 www.FirstRanker.com 04 Determine the condition number of the matrix 4 16 . 9 16 25

(c) State direct and iterative methods to solve system of linear equations. Solve the following system of linear equations using Gauss elimination method: x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40.

07

O.4 (a) Write the formula for Runge-Kutta fourth order method.

03

04

(b)	Fit a second degree polynomial to the following data using least square method.									
(~)	y	-3	-2	-1	0	1	2	3		
	x	12	4	1	2	7	15	30		

07

(c)	Calculat	te the fir	st four i	noments of the following distribution about the mea						mean.
	х	0	1	2	3	4	5	6	7	8
	f(x)	1	8	28	56	70	56	28	8	1

Q.5 (a) Develop a C program to fit regression line of y on x through given set of points using the least square method.

04

(b) The probability distribution of a commodity is given below.

First successful demand									
Probability	0.05	0.10	0.30	0.40	0.10	0.05			
Demand	5	6	7	8	9	10			

Find expected demand.

(c) For the following data, obtain trend values using five years moving average.

07

							5 5					
	Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	Value	3	7	14	8	10	11	14	12	16	20	25

Q.5 (a) Discuss the pitfalls of Gauss elimination.

03

(b) Define the following terms with examplest

04

- 1. Ill-conditioned system
- Significant figure
- (c) Obtain the correlation coefficient for the following data:

07

	x	100	98	≥78	85	110	93	80	
	y	85	90	70	72	98	81	74	

