GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2141005
Date:14/12/2018
Subject Name:Signals and Systems
Time: 02:30 PM TO 05:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

MARKS
Q. 1 (a) Explain Energy and power signal 03
(b) Explain time shifting and periodicity property of laplace transform. $\mathbf{0 4}$
(c) Write the properties of convolution and explain them with suitable example.
Q. 2 (a) Define system and explain the classification of system.03
(b) Consider the following signal 04
$\mathrm{X}(\mathrm{t})=A e^{\alpha t} u(t), \alpha>0$
Is $X(t)$ an energy signal or power signal as $\alpha \rightarrow 0$ what is the nature of signal?
(c) Compute convolution:
$\begin{aligned} \text { 1.) } y(n) & =x(n) * h(n), x(n)=\{1,1,0,1,1\}, \\ h(n) & =\{1,-2,-3,4\} \\ \text { 2.) } y(n) & =x(n) * h(n), x(n)=h(n)=\{1,2,-1,3\}\end{aligned}$

OR

(c) Explain the properties of continoous time and discrete time systems. 07
Q. 3 (a) Prove that a DT LTI system is causal if and only if $\mathrm{h}(\mathrm{n})=0$ for $\mathrm{n}<0$. 03
(b) Impulse response of DT LTI system is given by $\mathrm{h}(\mathrm{n})=n\left(\frac{1}{2}\right)^{n} u(n)$. Determine whether the system is stable or not.
(c) Obtain the convolution integral of
$\mathrm{X}(\mathrm{t})=1$ for $-1 \leq \mathrm{t} \leq 1$
$H(t)=1$ for $0 \leq t \leq 2$

OR

Q. 3 (a) State and prove a condition for a discrete time LTI system to be stable. 03
(b) Find and sketch even and odd component of following:

$$
f(x)=\left\{\begin{array}{c}
t, \quad 0 \leq t \leq 1 \\
2-t, 1 \leq t \leq 2
\end{array}\right.
$$

(c) Find the convolution of two signals $\mathrm{X}_{1}(\mathrm{t})$ and $\mathrm{X}_{2}(\mathrm{t})$

$$
\begin{aligned}
& \mathrm{X}_{1}(\mathrm{t})=e^{-4 t} u(t) \\
& \mathrm{X}_{2}(\mathrm{t})=u(t-4)
\end{aligned}
$$

Q. 4 (a) State and prove the initial value theorem.

(c) Find the fourier series representation for the saw tooth wave depicted in the following figure.

OR
Q. 4 (a) Write the time scaling property of fourier transform and find the fourier transform of $\mathrm{x}(\mathrm{t})=e^{-\alpha t} u(t)$
(b) Prove that when a periodic signal is time shifted, then the magnitude 04 of its fourier series coefficient remains unchanged. $\left(\left|a_{n}\right|=\left|b_{n}\right|\right)$
(c) Find the fourier transform of the periodic signal 07 $\mathrm{x}(\mathrm{t})=\cos (2 \pi f t) u(t)$
Q. 5 (a) Obtain the DFT of unit impulse $\delta(\mathrm{n}) \quad 03$
(b) Determine the z-transform of following finite duration sequence 04 $X(n)=\{1,2,4,5,0,7\}$
\uparrow
(c) Find the Z-transform of the signal

$$
\begin{gathered}
\mathrm{X}(\mathrm{n})=\left(-\frac{1}{5}\right)^{n} u(n)+5\left(\frac{1}{2}\right)^{n} u(-n-1) \\
\text { OR }
\end{gathered}
$$

Q. 5 (a) Explain discrete fourier transform and enlist its features.03

(b) Define the region of convergence with respect to z-transform.
(c) Find the inverse z -transform of

$$
\left.\mathrm{X}(\mathrm{z})=\frac{z}{z-1} \quad|z|\right\rangle^{1}
$$

