GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (New) EXAMINATION - WINTER 2018

Subject Code:2131704
Date:05/12/2018

Subject Name: Digital Logic Circuits
 Time: 10:30 AM TO 01:00 PM
 Instructions:
 1. Attempt all questions.
 2. Make suitable assumptions wherever necessary.
 3. Figures to the right indicate full marks.

Total Marks: 70
Q. 1 (a) Design 3 to 8 line decoder with neat sketch and truth table. 03
(b) Explain ROM with block diagram. Give classification of ROM. 04
(c) Explain D type edge triggered flip flop in detail. 07
Q. 2 (a) Design full subtractor with necessary derivation of functions. 03
(b) What do you mean by universal gates? Implement NOT, AND, OR with both $\mathbf{0 4}$ universal gates.
(c) Design 3 bit binary counter using T flip flops. 07

OR
(c) What is the limitation of Clocked RS flip flop? How it can be resolved using J $\mathbf{0 7}$ K flip flop.
Q. 3 (a) Explain gray code in detail. 03
(b) Express the boolean function $\mathrm{F}=\mathrm{xy}+\mathrm{x}$ ' z in a product of maxterm form. $\mathbf{0 4}$
(c) Design 4 bit bidirectional shift register with parallel load facility. 07

OR

Q. 3 (a) Give the comparison of 1's and 2's complements. 03
(b) Show that $\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{B}+\mathrm{BD}^{\prime}+\mathrm{ABD}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}=\mathrm{B}+\mathrm{C}$. 04
(c) Design BCD ripple counter. 07
Q. 4 (a) Convert (163.875) ${ }_{10}$ to binary. 03
(b) Explain duality principle with suitable example. 04
(c) Explain arithmetic, logic and shiftmicrooperations. 07

OR
Q. 4 (a) Subtract $(111.111)_{2}$ from $(1010.01)_{2} \quad 03$
(b) Explain DeMorgan theorem with suitable example. 04
(c) Explain emitter coupled logic with neat sketch. $\mathbf{0 7}$
Q. 5 (a) Simplify the Boolean expression $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(2,3,6,7,8,10,11,13,14)$ using $\mathbf{0 3}$ K Map.
(b) Simplify the Boolean function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,3,7,11,15)$ with don't care $\mathbf{0 4}$ condition $\mathrm{d}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,5)$
(c) Explain dual slope analog to digital converter. $\mathbf{0 7}$

OR
Q. 5 (a) Simplify Boolean function $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ using $\mathrm{K} \mathbf{0 3}$ map.
(b) Reduce the following expressions $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,2,3,6,8,12,14,15)$ and $\mathrm{F}_{2} \quad \mathbf{0 4}$ $(A, B, C, D)=I I(0,4,9,10,11,14,15)$ using K map.
(c) Explain R-2R ladder type digital to analog converter. $\mathbf{0 7}$

