

www.FirstRanker.com

Enro WWW.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION – WINTER 2018

Subject Code:2141708

Subject Name:Control System

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Date:28/11/2018

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

04

Q.1	(a)	Explain Initial value theorem and Final Theorem in Laplace	03
		Transformation.	
	(b)	Find the inverse Laplace Transform of the following function:	04
		$F(s) = \frac{5s+3}{5s+3}$	

$$(S) = \frac{1}{(s+1)(s+2)(s+3)}$$

(c) Explain in detail open loop and closed loop control system along 07 with example, advantages and disadvantages.

- (**b**) Explain constant-M circle.
- (c) Sketch the bode plot and determine the gain cross-over and phase 07 cross over frequencies for the following transfer function.

$$G(s) = \frac{10}{s(1+0.5s)(1+0.1s)}$$

(c) Draw the Bode plot for a system having

$$G(s)H(s) = \frac{100}{s(s+1)(s+2)}$$
07

Find gain margin, phase margin.

Q.3 (a) Obtain the transfer function of following electrical system. 03

(b) Derive force-voltage and force-current analogy.
(c) Obtain the transfer function from the given signal flow graph.
07

www.FirstRanker.com

www.FirstRanker.com

Explain absolute stability, relative stability and BIBO stability. 0.3 03 (a) Determine the transfer function of a system whose block diagram is given **(b)** 04 below.

Derive the transfer function of armature-controlled DC motor. 07 (c)

Q.4 (a) A unity feedback system has transfer function

$$G(s) = \frac{K(2s+1)}{s(4s+1)(s+1)^2}$$

Determine the value of K, if the steady state value of error to be less than 0.1 when an input r(t) = 1 + 5t is applied.

- (b) State the rules for construction of root locus.
- (c) Draw the root-locus for open-loop transfer function

$$G(s)H(s) = \frac{K}{s(s+3)(s^2+2s+2)}$$

when K is varied from 0 to infinity.

- Derive steady state errors for unit step, unit ramp and unit parabolic **Q.4** 03 (a) input.
 - 04 (b) A unity feedback system is given by open loop transfer function

$$G(s) = \frac{\pi}{s(s+10)}$$

Determine the gain K with damping factor of 0.5. Also determine settling time, peak overshoot and peak time for a unit step input with the obtained K.

07 The open loop transfer function of a feedback control system is (c)

$$G(s)H(s) = \frac{\kappa}{s(s+4)(s^2+4s+20)}$$

Find the root locus as K is varied from 0 to infinity.

Consider the characteristic equation

$$s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$$

$$+8s^{3} + 18s^{2} + 16s + 5 = 0$$

Find out the stability using Hurwitz's criterion.

(**b**) Compute e^{-At} if

Q.5

(a)

04

2

03

03

04

07

www.FirstRanker.com

07

using laplace transform method.

(c) Obtain the transfer function of the system having following state 07 transition equations.

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -25 & -5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 25 \\ -120 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$
OR

- Q.5 (a) What are the advantages of state variable analysis over classical 03 methods?
 - (b) Using Routh's test determine the stability of a system whose 04 characteristic equation is given by

$$s^{6} + 2s^{5} + 8s^{4} + 12s^{3} + 20s^{2} + 16s + 16 = 0$$

(c) Obtain the state equations for the following system.

