GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2141905
Date:22/11/2018

Subject Name:Complex Variables and Numerical Methods
 Time: 02:30 PM TO 05:30 PM
 Total Marks: 70

 Instructions:1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Find the roots of the equation $Z^{2}+2 i z+(2-4 i)=0$
(b) Show that $f(z)=z I_{m}(z)$ is differentiable only at $z=0$ and $f^{\prime}(0)=0$.
(c) Solve the following system of equation by Gauss-Seidal method correct to three decimal places.

$$
\begin{gathered}
2 x+y+54 z=110 \\
27 x+6 y-z=85 \\
6 x+15 y+2 z=72
\end{gathered}
$$

Q. 2 (a) Evaluate $\int_{0}^{2+i} z^{2} d z$ along the line joining the points $(0,0)$ and $(2,1)$.
(b) Determine the mobius transformation that maps $z_{1}=0, z_{2}=1, z_{3}=\infty$ onto $w_{1}=-1, w_{2}=-i, w_{3}=1$ respectively.
(c) Prove that the $n^{\text {th }}$ roots of unity are in geometric progression. Also show that their sum is zero.

OR
(c) Verify that $\mathrm{C}-\mathrm{R}$ equation are satisfied at $z=0$ for the $\mathbf{0 7}$ function $f(z)=\left\{\begin{array}{l}\frac{z^{-2}}{z} \text { if } z \neq 0 \\ 0 \text { if } z=0\end{array}\right.$
Q. 3 (a) Evaluate $\oint_{C}\left[\frac{3}{z-i}<\frac{6}{(z-i)^{2}}\right] d z$, where $C:|z|=2$.
(b) Find the radius of convergence of
$\sum_{n=1}^{\infty}\left(\frac{6 n+1}{2 n+5}\right)^{2}(z-2 i)^{n}$
(c) Using the residue theorem, evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$

OR

Q. 3 (a) Expand $f(z)=\frac{z-1}{z+1}$ as a Taylor's series about the point $z=0$.
(b) Check whether $f(z)=\sin z$ is analytic or not. If analytic find its derivative.
(c) Evaluate $\oint_{C} \frac{z^{3}-z^{2}+z-1}{z^{3}+4 z} d z$ counter clockwise around C , where C is 07 $|z|=1$ and $|z|=3$.
Q. 4 (a) Using Newton's forward formula, find the value of $f(1.6)$ if

x	1	1.4	1.8	2.2
$\mathrm{f}(\mathrm{x})$	3.49	4.82	5.96	6.5

(b) Find the Lagrange interpolating polynomial from the following data

x	0	1	4	5
$f(x)$	1	3	24	39

(c) Find a root of $x^{4}-x^{3}+10 x+7=0$ correct to three decimal places between $a=-2$ and $b=-1$ by Newton-Raphson method.

OR
Q. 4 (a) Solve the system of equation by Gauss elimination method.

$$
\begin{gathered}
x+y+z=9 \\
2 x-3 y+4 z=13 \\
3 x+4 y+5 z=40
\end{gathered}
$$

(b) Compute $f(8)$ from the following values using Newton's Divided difference formula

x	4	5	7	10	11	13
$\mathrm{f}(\mathrm{x})$	48	100	294	900	1210	2028

(c) Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$, taking $h=1$ and using Simpson's $\frac{1}{3}$ rule. Hence obtain approximate value of $\log _{e} 7$.
Q. 5 (a) Evaluate $\Delta^{n} e^{x}$
(b) Use power method to find the largest of Eigen values of the $\operatorname{matrix} A=\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$.
(c) Use Euler's method to obtain an approximate value of $y(0.4)$ for the differential equation $y^{\prime}=x+y, y(0)=1$ with $h=0.1$.

OR

Q. 5 (a) Prove that $h D=\log (1+\Delta)$
(b) Evaluate $\mathrm{I}=\int_{-1}^{1} \frac{d x}{1+x^{2}}$ by one point, two point and three point Gaussian formula.
(c) Determine $y(0.1), y(0.2)$ correct upto four decimal places by fourth order Runge-Kutta method from $\frac{d y}{d x}=2 x+y, y(0)=1$

