Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2141905 Date:22/11/2018

Subject Name: Complex Variables and Numerical Methods

Time: 02:30 PM TO 05:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Find the roots of the equation $Z^2 + 2iz + (2-4i) = 0$
 - (b) Show that $f(z) = zI_m(z)$ is differentiable only at z = 0 and f'(0) = 0. 04
 - (c) Solve the following system of equation by Gauss-Seidal method correct to 07 three decimal places.

$$2x + y + 54z = 110$$

 $27x + 6y - z = 85$
 $6x + 15y + 2z = 72$

- Q.2 (a) Evaluate $\int_0^{2+i} z^2 dz$ along the line joining the points (0,0) and (2,1).
 - (b) Determine the mobius transformation that maps $z_1 = 0$, $z_2 = 1$, $z_3 = \infty$ 04 onto $w_1 = -1$, $w_2 = -i$, $w_3 = 1$ respectively.
 - (c) Prove that the n^{th} roots of unity are in geometric progression. Also show 07 that their sum is zero.

OR

- (c) Verify that C-R equation are satisfied at z = 0 for the 07 function $f(z) = \begin{cases} \frac{z^{-2}}{z} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$
- Q.3 (a) Evaluate $\oint_C \left[\frac{3}{z-i}\right] \frac{6}{(z-i)^2} dz$, where C: |z| = 2.
 - (b) Find the radius of convergence of $\sum_{n=1}^{\infty} \left(\frac{6n+1}{2n+5}\right)^2 (z-2i)^n$
 - (c) Using the residue theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{5-3\sin\theta}$ 07

OR

- Q.3 (a) Expand $f(z) = \frac{z-1}{z+1}$ as a Taylor's series about the point z = 0.
 - (b) Check whether $f(z) = \sin z$ is analytic or not. If analytic find its **04** derivative.
 - (c) Evaluate $\oint_C \frac{z^2-z^2+z-1}{z^2+4z} dz$ counter clockwise around C, where C is |z| = 1 and |z| = 3.

Q.4	(a)	Using New	ton's forw	ard formula	, find the	value of	f(1.6) if
------------	-----	-----------	------------	-------------	------------	----------	-----------

03

X	1	1.4	1.8	2.2
f(x)	3.49	4.82	5.96	6.5

(b) Find the Lagrange interpolating polynomial from the following data

04

X	0	1	4	5
f(x)	1	3	24	39

(c) Find a root of $x^4 - x^3 + 10x + 7 = 0$ correct to three decimal places between a = -2 and b = -1 by Newton-Raphson method.

OR

Q.4 (a) Solve the system of equation by Gauss elimination method.

03

$$x + y + z = 9$$

$$2x - 3y + 4z = 13$$

$$3x + 4y + 5z = 40$$

(b) Compute f(8) from the following values using Newton's Divided **04** difference formula

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(c) Evaluate $\int_0^6 \frac{1}{1+x} dx$, taking h = 1 and using Simpson's $\frac{1}{3}$ rule. Hence obtain approximate value of $\log_6 7$.

Q.5 (a) Evaluate $\Delta^n e^x$

03

- (b) Use power method to find the largest of Eigen values of the **04** matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$
- (c) Use Euler's method to obtain an approximate value of y(0.4) for the 07 differential equation y' = x + y, y(0) = 1 with h = 0.1.

OR

Q.5 (a) Prove that $hD = log(1 + \Delta)$

03

- (b) Evaluate $I = \int_{-1}^{1} \frac{dx}{1+x^2}$ by one point, two point and three point Gaussian formula.
- (c) Determine y(0.1), y(0.2) correct upto four decimal places by fourth order 07 Runge-Kutta method from $\frac{dy}{dx} = 2x + y, y(0) = 1$
