

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

	B	E - SEMESTER-IV (NEW) EXAMINATION – WINTER 2018	
Subject Code:2142004 Date:10/1			/12/2018
Subjec	t Na	me:Engineering Thermodynamics	
Time: 02:30 PM TO 05:00 PM Total Mar			arks: 70
Instruct	ions:		
1	l. At	tempt all questions.	
2	3. Fig	gures to the right indicate full marks.	
	c	5 0	MARKS
Q.1	(a)	Define following terms: (1) Isolated system, (2) Intensive property	03
		(3) Extensive property	
	(b)	Explain Quasi-static Process with diagram.	04
	(c)	Prove the equivalency of Kelvin-Plank and Clausius statements.	07
Q.2	(a)	Explain what is meant by PMM1.Why is such a device not possible?	03
	(b)	What do you mean by Thermal equilibrium? Explain it with suitable	04
		examples.	
	(c)	Write steady flow energy equation in case of diffuser, boiler, turbine,	07
		nozzle, pump, heat exchanger and condenser.	
		OR	
	(c)	Derive expression for air standard efficiency of diesel cycle.	07
Q.3	(a)	Explain. Discuss limitations of first law of thermodynamics.	03
	(b)	Define Entropy and show that it is a property of the system.	04
	(c)	Write note on reversibility and irreversibility.	07
		OR	
Q.3	(a)	Give statements for second law of thermodynamics.	03
	(b)	State and prove Carnot's theorem.	04
	(c)	Explain briefly Otto cycle with help of p-v and T-s diagram and	07
		derive an expression for ideal efficiency of Otto cycle.	
0.4	(\mathbf{a})	What do you wederstand by Joyla Thomson coefficient?	02
Q.4	(a) (b)	Derive the two T ds equation starting from the basics	03
	(\mathbf{U})	A best engine is energeted between 700% C and 20% C. It drive a best	04
	(C)	A heat engine is operated between 100° C and 30° C. It drive a heat	07
		of the heat angine and the heat nump are helf of that of corresponding	
		Carnot values. Calculate amount of heat rejected by heat nump at	
		100° C when 100 KL is absorbed by heat engine at 700° C	
		OR	
0.4	(z)	Explain Zonoth law of themes demande	0.2
Q.4	(a)	Explain Zeroth law of thermodynamic.	03
	(b)	Write comparison of Carnot and Rankine cycle.	04
	(c)	Compare otto, diesel and dual cycle for	07
		(1) Constant maximum pressure and heat input.	
		(2) Same maximum pressure and temperature.	

www.FirstRanker.com

www.FirstRanker.com

Q.5 (a) State and explain law of corresponding states.

03 04

04

(b) State and explain Dalton's law of partial pressure . 04
(c) In an air standard Otto cycle, the maximum and minimum temperatures are 1600°C and 20°C. The heat supplied per kg of air is 900 kJ. Determine the compression ratio, the cycle efficiency and the ratio of maximum to minimum pressure in the cycle. Take Cv = 0.718 kJ/kg K and γ = 1.4

OR

- Q.5 (a) Define heat engine. Also explain the need for a sink in a heat engine. 03
 - (b) State and explain Avogadro's law
 - (c) In an ideal Diesel cycle, the temperature at the beginning and at the end of compression are 57°C and 603°C respectively. The temperature at the beginning and end of expansion are 1950°C and 870°C respectively. Determine the ideal efficiency of the cycle. If the pressure at the beginning is 1bar, calculate the maximum pressure in the cycle.

www.FirstRanker.com