FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

DE GEMEGRED IN (NEW) EXAMINATION MINTED 2010					
a 1 • 4	BE -	SEMIESTER-IV (NEW) EXAMINATION – WINTER 2018	0/0010		
Subject	BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018 Ct Code:2142305 Date:12/12/2018 Ct Name:Applied Mathematics in Plastic Industry 02:30 PM TO 05:00 PM Total Marks: 70 ions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks 1 (a) Define: Newtonian fluid, Shear stress and Shear Strain 03 (b) Give detail classification of Non Newtonian fluids along with 04 example. (c) Explain the mathematical model using Maxwell model for 07 Viscoelastic behavior. 2 (a) Discuss short term test methods for Plastics. 03 (b) Write a note on: Swelling ratios due to Shear Stresses. 04 (c) Explain cone and plate viscometer to obtain flow data on polymer melts. 07 OR (c) In a particular extruder screw the channel depth is 2.4 mm, the screw 07				
Subject	Name	Applied Mathematics in Plastic Industry			
Time: 02	2:30 PN	A TO 05:00 PM Total Ma	rks: 70		
Instructio	ns:				
1.	Attem	pt all questions.			
2.	Make suitable assumptions wherever necessary.				
3.	Figures to the right indicate full marks				
			MARKS		
Q.1	(a)	Define: Newtonian fluid, Shear stress and Shear Strain	03		
	(b)	Give detail classification of Non Newtonian fluids along with	04		
		example.			
	(c)	Explain the mathematical model using Maxwell model for	07		
	(t)	Viscoelastic behavior	07		
		viscoelastie beliavior.			
Q.2	(9)	Discuss short term test methods for Plastics	03		
	(a) (b)	Write a note on: Swelling ratios due to Shear Stresses	03		
	(b) (c)	Explain cone and plate viscometer to obtain flow data on polymer melts	07		
	(C)		07		
	(c)	In a particular extruder screw the channel denth is 2.4 mm, the screw	07		
	(C)	diameter is 50mm the screw speed is 100 rev/min the flight angle is	07		
		$17{\circ}42'$ and the pressure varies linearly over the screw length of 1000			
		mm from zero at entry to 20 MN/m ² at the die entry. Estimate (a) the			
		drag flow (b) the pressure flow (c) the total flow. the plastic has a			
		viscosity of 210Ns/m ²			
0.3	(a)	Discuss forms of Fiber reinforcement in composites.	03		
•	(b)	With neat diagram explain Ram extruder to obtain flow data on	04		
		polymer melt.			
	(c)	Explain: Iso thermal flow in channels: Non Newtonian fluids -flow of	07		
		power law fluid along a channel of uniform circular cross-section.			
		OR			
Q.3	(a)	The output of polythene from an extruder is $30 \times 10^{-6} \text{ m}^3/\text{s}$. If the	03		
		breaker plate in this extruder has 80 holes, each being 4 mm			
		diameter and 12 mm long, estimate the pressure drop across the			
		plate assuming the material temperature is 170°C at this point. The			
		shear stress is $1.2 \times 10^5 \text{ N/m}^2$			
	(b)	Draw the creep curve and explain its various stages.	04		
	(c)	Explain concentric cylinder viscometer to obtain flow data on polymer	07		
		melts.			
Q.4	(a)	Draw graphs for Hooke model, Newton Model and Voigt model	03		
		showing Elongation – Time and Stress-strain behaviour.	0.4		
	(b)	I ne density of a composite made from unidirectional glass fibers in an an answer matrix is 1050 km^3 . If the heat time of the above 1	04		
		an epoxy matrix is 1950 kg/m ² . If the densities of the glass and epoxy are known to be 2540 kg/m^3 and 1200 kg/m^3 calculate the module			
		are known to be 2340 kg/m ² and 1500 kg/m ² , calculate the Weight			
	(a)	Discuss Desidence Time and Delevation Time	07		
	(\mathbf{U})		U/		

1

www.FirstRanker.com

www.FirstRanker.com

- Q.4 (a) Discuss about Melt fracture and Sharksin flow defects in polymer 03 melt.
 - (b) Write a short note on strength of composites for Fiber reinforced 04 materials.
 - (c) Explain the analysis of heat transfer during polymer processing. 07
- Q.5 (a) Define drag flow, pressure flow, leakage flow
 - (b) Applying the Carreau model to PP, the following constants are known at 190°C. $\Pi_0=2250 \text{ Ns/m}^2$, $A_T=0.05$, n=0.33, Estimate the viscosity of PP at 230 °C and a shear rate of 1000 s⁻¹. The glass transition temperature for the PP is -10 °C.
 - (c) Explain the analysis of continuous fiber composite having the 07 longitudinal properties.

OR

Q.5 (a) PEEK is to be reinforced with 20% by volume of unidirectional 03 carbon fibers and the properties of the individual materials are given below. Calculate the density, modulus and strength of the composite in the fiber direction.

Material	Density (kg/cm ³)	Tensile Strength (GN/m ²)	Modulus (GN/m ²)
PEEK	1300	0.058	3.8
Carbon Fiber	1800	2.1	400

(b) Derive Rheological models for Polymer melt flow.

04

03

(c) Explain the radius of gyration of an ideal branched polymer using Kramers Theorem.

07

www.firstRanker.com