

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER–IV (NEW) EXAMINATION – WINTER 2018		
Subject Code:2142506 Date:10/12				
Subi	ect N	ame:Fundamentals of Machine Design		
Timo	• 02.2	RA DM TO 05.00 DM Total Mar	ke. 70	
I IIIC, U2;3U FWI IO U3;UU FWI IO U3;UU FWI IOUAI WIAFKS				
mstru		: Attempt all questions		
	1. r 2. N	Attempt an questions. Make suitable assumptions wherever necessary		
	3. I	Figures to the right indicate full marks.		
			MARKS	
01	(a)	Explain methods of riveting	02	
Q.1	(a) (b)	Discuss coulting and fulloring	03	
	(\mathbf{D})	Find the efficiency of the following riveted joints: (1) Single riveted	04	
	(C)	In the efficiency of the following fiveled joints: (1). Single fiveled	07	
		50 mm (2) Double rivered lop joint of 6 mm plates with 20 mm		
		diameter rivete having a ritch of 65 mm. A source		
		Dermissible tensile stress in relate 120 MPs		
		Permissible tenshe stress in plate = 120 MPa		
		Permissible snearing stress in rivers = 90 MPa		
		Permissible crushing stress in fivets = 180 MPa		
Q.2	(a)	Explain various types of butt joint with sketch.	03	
	(b)	Explain procedure for evaluation strength of butt joints.	04	
	(c)	Discuss step by step design procedure of socket and spigot cotter joint.	07	
		OR		
	(c)	Explain step by step design procedure of knuckle joint.	07	
Q.3	(a)	Explain lock nut with sketch.	03	
	(b)	Give advantages and disadvantages of screwed joints.	04	
	(c)	What is stress concentration? Explain various methods of relieving stress	07	
		concentration.		
		OR		
Q.3	(a)	Define principle stress and residual stresses.	03	
	(b)	Discuss design of shaft on the basis of rigidity.	04	
	(c)	Find the diameter of a solid steel shaft to transmit 20 kW at 200 r.p.m.	07	
		The ultimate shear stress for the steel may be taken as 360 MPa and a		
		factor of safety as 8. If a hollow shaft is to be used in place of the solid		
		shaft, find the inside and outside diameter when the ratio of inside to		
		outside diameters is 0.5.		
Q.4	(a)	Define keys. Give application of keys.	03	
	(b)	Explain different types of sunk keys.	04	
	(c)	Design the rectangular key for a shaft of 50 mm diameter. The shearing	07	
		and crushing stresses for the key material are 42 MPa and 70 MPa.		
Q.4	(a)	Explain requirements of good shaft coupling.	03	
	(h)	Discuss construction and working of Flange coupling.	04	
	(c)	Design a clamp coupling to transmit 30 kW at 100 r.p.m. The	07	
		allowable shear stress for the shaft and key is 40 MPa and the number		
		of bolts connecting the two halves are six. The permissible tensile		
		stress for the bolts is 70 MPa. The coefficient of friction between the		
		muff and the shaft surface may be taken as 0.3.		

www.FirstRanker.com

(a)	Give assumptions in Euler's column theory.	03
(b)	Explain design procedure of piston rod.	04
(c)	Explain step by step design procedure of connecting rod.	07
	OR	
(a)	Define lever. Give applications of levers in engineering practice.	03
(b)	Write design procedure of lever.	04
(\mathbf{c})	Discuss design procedure of Rocker arm for exhaust valve.	07
	 (a) (b) (c) (a) (b) (c) 	 (a) Give assumptions in Euler's column theory. (b) Explain design procedure of piston rod. (c) Explain step by step design procedure of connecting rod. OR (a) Define lever. Give applications of levers in engineering practice. (b) Write design procedure of lever. (c) Discuss design procedure of Rocker arm for exhaust valve.

www.firstRanker.com