GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2143507
Date:12/12/2018
Subject Name:Fundamentals of Stoichiometry
Time: 02:30 PM TO 05:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Explain: Fundamental quantities and Derived quantities? 03
(b) The thermal conductivity of an insulating brick is $0.15 \mathrm{Btu} /\left(\mathrm{ft} . \mathrm{h} .{ }^{\circ} \mathrm{F}\right)$). Express the thermal conductivity in SI units
(c) The average molar mass of a flue gas sample is calculated by two different engineers. One engineer uses the correct molar mass of 28 for N_{2} and determines the average molar mass to be 30.08 , the other engineer, using an incorrect value of 14 , calculates the average molar mass to be 18.74 . (i) Calculate the volume $\%$ of nitrogen in the flue gases, (ii) If the remaining components of the flue gases are CO_{2} and O_{2}, calculate the volume \% each of them
Q. 2 (a) Explain : Dalton's law and Raoult's law 03
(b) City gas has composition by volume expressed as: $\mathrm{CH}_{4}=78 \%, \mathrm{C}_{2} \mathrm{H}_{6}=12 \%$ and $\mathrm{C}_{3} \mathrm{H}_{8}=10 \%$, calculate the gas density in $\mathrm{kg} / \mathrm{m}^{3}$ under 585 psig and $37{ }^{\circ} \mathrm{C}$
(c) Bottled liquid gas of the following composition is sold for house hold use:

Components	Mole\%	Vapour presure. at $30^{\circ} \mathrm{C}$ (bar)
n- butane	50	3.4
Propane	45	10.8
Ethane	5	46.6

Determine (1) The pressure of the system and the equilibrium vapour composition at $30^{\circ} \mathrm{C}$, and (2) if all ethane is removed from the liquid, the pressure of the system and the vapour composition at $30^{\circ} \mathrm{C}$. Assume Raoult's law is applicable

temperature of $100{ }^{\circ} \mathrm{C}$. The vapours are in contact with solution. Calculate the total pressure and molar \% compositions of liquid and the vapour. The vapour pressures and the molecular weights are as follows:

Components	Vapour pressure at $100^{\circ} \mathrm{C}$	Mol. weight
Benzene	1340 mm Hg	78
Toluene	560 mm Hg	92
Xylene	210 mm Hg	106

Assume Raoult's law is applicable
Q. 3 (a) Define : Mass \%, Mole \% and ppm

$$
\mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{HCl}_{3}+\mathrm{H}_{2}+\mathrm{HCl}
$$

(1) The stoichiometric ratio of Cl_{2} to $\mathrm{C}_{2} \mathrm{H}_{4}$
(2) If $4 \mathrm{kmol} \mathrm{Cl}_{2}$ is used per kmol of $\mathrm{C}_{2} \mathrm{H}_{4}$, find the $\%$ excess Cl_{2}
(3) The amount of HCl produced from $50 \mathrm{~kg} \mathrm{C}_{2} \mathrm{H}_{4}$ assuming reaction goes to completion.
Q. 4 (a) Discuss methods of solving material balance problems without chemical reaction.
(b) 2000 kg of wet solids containing 70% solids by weight are fed to tray dyer where it is dried by hot air. The product finally obtained is found to contain 1% moisture by weight, calculate: (1) kg of water removed from wet solids (2) kg of the product obtained.

$\mathrm{kg} / \mathrm{hr}$ to a continuous distillation column. The product (distillate) is a solution containing 95.5% alcohol. The waste solution from the column carries 0.1% of alcohol. All percentages are by mass. Calculate (a) the mass flow rates of top and bottom products in kg / h and (b) the percentage loss of alcohol

OR
Q. 4 (a) Define: Solubility, Vapour pressure and Boiling point
(b) A single effect evaporator is fed with $10000 \mathrm{~kg} / \mathrm{hr}$ of weak liquor containing 15% caustic by weight and is concentrated to get thick liquor containing 40% by weight caustic (NaOH). Calculate (a). $\mathrm{Kg} / \mathrm{hr}$ of water evaporated (b) $\mathrm{kg} / \mathrm{hr}$ of thick liquor obtained
(c) The feed to a continuous fractionating column analyzed by weight 28% benzene and 72% toluene. The analysis of the distillate shows 52% (by weight) benzene and 5% (by weight) benzene was found in the bottom product. Calculate the amount of distillate and bottom product per 1000 kg of feed per hour. Also calculate the percent recovery of benzene
Q. 5 (a) Define: heat capacity, sensible heat and latent heat
(b) Pure methane is heated from 303 K to 523 K at atmospheric pressure. Calculate the heat added per kmol methane using the following data: $\mathrm{Cp}=26.586+7.5820 \times 10^{-3} \mathrm{~T}-1.1200 \times 10^{-6} \mathrm{~T}^{2} \quad, \mathrm{~kJ} /(\mathrm{kmol}-\mathrm{K})$

(c) The heat of combustion of methane, carbon and hydrogen are $-890.4 \mathrm{~kJ} / \mathrm{mol}$, $393.51 \mathrm{~kJ} / \mathrm{mol}$ and $-285.84 \mathrm{~kJ} / \mathrm{mol}$ respectively. Calculate the heat of formation of methane.

OR
Q. 5 (a) Define : Adiabatic reaction and adiabatic flame temperature
(b) Calculate the theoretical flame temperature for CO when it is burnt with 100% excess air. Both the reactants are at 373 K . The heat capacities (J/mol.K) (may be assumed constant) are 29.23 for $\mathrm{CO}, 34.83$ for $\mathrm{O}_{2}, 33.03$ for N_{2} and 53.59 for CO_{2}. The standard heat of combustion at 298 K is $-282.99 \mathrm{~kJ} / \mathrm{mol} \mathrm{CO}$.
(c) Define the following terms with respect to humidification operation:
(1) Absolute humidity (2) Relative humidity (3) Percent humidity
(4) Dry bulb temperature (5) Wet bulb temperature (6) Dew point temperature (7) Humid Heat

