

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (OLD) EXAMINATION - WINTER 2018

Subject Code:140001 Date: 22/11/2018 **Subject Name: Mathematics-IV**

Total Marks: 70 Time: 02:30 PM TO 05:30 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (i) Define harmonic function and show that $f(x, y) = x^2 y^2$ is **Q.1** harmonic.
 - (ii) Show that $\lim_{z\to 0} \frac{\bar{z}}{z}$ does not exist. 04
 - **(b)** Apply Gauss-Seidel method to solve the equations **07** 20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25.
- (a) (i) State Trapezoidal rule, Simpson's 1/3rd rule and Simpson 3/8th rule. 03 Q.2(ii) Find the positive root of $x^3 - x - 11 = 0$ correct to the three decimal 04 places by Bisection method.
 - (b) Obtain approximate value of y at x = 0.2 for the differential equation 07 $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0, using Taylor's method. Also compare the obtained numerical solution with the exact solution.

- Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{v^2 + x^2}$ with **07** y(0) = 1 at x = 0.2.
- (a) (i) Evaluate $\int_0^1 e^{-x^2} dx$ using Gauss quadrature formula of three points. Q.3 03 (ii) Using usual notations, show that $\Delta = E\Delta = E\nabla = \delta E^{1/2}$ and $(E^{1/2} + E)$ 04 $E^{-1/2}$) $(1 + \Delta)^{1/2} = 2 + \Delta$.
 - (b) Using Lagrange's interpolation formula, find the value of y when x = x07 10, if the following values of x and y are given:

х	5	6	9	11
у	12	13	14	16
1	ı	OR	ı	

- (a) (i) Define entire function and show that $f(z) = e^z$ is entire function. **Q.3**
 - (ii) Find harmonic conjugate of $u(x, y) = 2x x^3 + 3xy^2$. 04
 - (b) Using Newton forward interpolation formula, find the value of f(1.6) if **07** the following values of x and f(x) are given:

x	1	1.4	1.8	2.2
f(x)	3.49	4.82	5.96	6.5

- (a) (i) Evaluate $\oint_c \frac{e^{-z}}{z+1} dz$, where c is a circle |z| = 1/2. **Q.4 03**
 - (ii) Determine and sketch the image of |z| = 1 under the transformationw = z + i.
 - (b) Find Maclaurin's series expansion of the function $f(z) = \sin^2 z$. **07**

1

04

03

tran	ker's	choice www.FirstRanker.com www.FirstRanker.c	com
Q.4	(a)	www.FirstRankeR.com www.FirstRanker.com (i) Evaluate $\oint_c \frac{e^z}{z+1} dz$, where c is a circle $ z = 2$.	03
		(ii) Find bilinear transformation that maps the points -1, 0, 1 onto -1, -i,1 respectively.	04
	(b)	Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series valid for $ z < 1$ and $1 < 1$	07
		z < 3.	
Q.5	(a)	(i) Find an upper bound for the absolute value of the integral $\int_C e^z dz$,	03
		where C is the line segment joining the points $(0,0)$ and $(1, 2\sqrt{2})$.	04
		(ii) Determine the poles of the function $f(z) = \frac{1}{(z^2+1)^2}$ and the residue at	V4
	(b)	each poles. Evaluate $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+2x+2)}.$	07
		OR	
Q.5	(a)	(i) State (i) Rouche's Thorem (ii) Liouville's Theorem	03
		(ii) Evaluate $\oint_C \frac{e^{3z}}{(z-ln^2)^4} dz$, where C is the square with vertices at ± 1 , $\pm i$.	04
	(b)	Evaluate $\int_0^{2\pi} \frac{d\theta}{(2+\cos\theta)^2}$.	07

WAN Files Ranker com