GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (OLD) EXAMINATION - WINTER 2018
Subject Code: 140603
Date: 10/12/2018

Subject Name: Structural Analysis-II

Time: 02:30 PM TO 05:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Distinguish between : Pre-tensioning and Post tensioning 07
(b) Define strain energy. State and Prove Castigliano's first theorem. 07
Q. 2 (a) Calculate fixed end moments and draw B.M. and S.F. diagrams for a fixed beam 07 AB of span 4 m and subjected to udl of $25 \mathrm{kN} / \mathrm{m}$ over the entire span.
(b) Calculate vertical displacement of point C for a rigid cantilever frame shown in $\mathbf{0 7}$ Fig. 1. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=3 \times 10^{8} \mathrm{~mm}^{4}$.

OR
(b) Calculate horizontal displacement of point C for a rigid cantilever frame shown $\mathbf{0 7}$
in Fig. 1. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=3 \times 10^{8} \mathrm{~mm}^{4}$.
Q. 3 (a) List causes of side sway for portal frame. 04
(b) Using Moment Distribution method find support moments and draw B.M. and $\mathbf{1 0}$ S.F. diagrams for the continuous beam shown in Fig. 2

OR
Q. 3 (a) Explain (i) Carry over factor (ii) Distribution Factor 04
(b) Analyse the beam shown in Fig. 3 by consistent deformation method. Draw shear 10 force and bending moment diagram. $\mathrm{EI}=$ constant.
Q. 4 (a) Advantages and disadvantages of fixed beam. 04
(b) A continuous beam $A B C$ is having spans $A B$ and $B C$ of length $4 m$ and $3 m$, respectively. Span $A B$ is subjected to udl of $60 \mathrm{kN} / \mathrm{m}$ while span $B C$ is subjected to udl of $80 \mathrm{kN} / \mathrm{m}$ respectively. Consider support system at A, B and C is roller (simply) support. Find the support moments and draw B.M. and S.F. diagrams.

OR

Q. 4 (a) Explain Muller-Breslau principle. 04
(b) Using Slope Deflection method, determine the support moments and reactions for the continuous beam shown in Fig. 4. Draw B.M. and S.F. diagrams.
Q. 5 (a) State and explain Clapeyron's theorem of three moments. 04
(b) Using Kani's Method, determine the moments at A, B, C, D for the portal frame as shown in Fig. 5

OR

Q. 5 (a) List losses in prestressing. 04
(b) Draw influence line diagram for propped cantilever beam AB of length 12 m for (i) Reaction at fixed end $\left(\mathrm{V}_{\mathrm{a}}\right)$ (ii) Reaction at propped end $\left(\mathrm{V}_{\mathrm{b}}\right)$

$* * * * * * * * * * * *$

