FirstRanker.com

www.FirstRanker.com

Enrowww.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (OLD) EXAMINATION – WINTER 2018 Subject Code:140603 Date: 10/12/2018

Subject Name: Structural Analysis-II

Total Marks: 70

Time: 02:30 PM TO 05:0	0 PM
------------------------	------

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b)	Distinguish between : Pre-tensioning and Post tensioning Define strain energy. State and Prove Castigliano's first theorem.	07 07
Q.2	(a)	Calculate fixed end moments and draw B.M. and S.F. diagrams for a fixed beam AB of span 4m and subjected to udl of 25 kN/m over the entire span.	07
	(b)	Calculate vertical displacement of point C for a rigid cantilever frame shown in Fig. 1 . $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 3 \times 10^8 \text{ mm}^4$.	07
		OR	
	(b)	Calculate horizontal displacement of point C for a rigid cantilever frame shown in Fig. 1 . $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 3 \times 10^8 \text{ mm}^4$.	07
0.3	(a)	List causes of side sway for portal frame.	04
L	(b)	Using Moment Distribution method find support moments and draw B.M. and	10
	()	S F diagrams for the continuous beam shown in Fig. 2	10
		OR	
03	(9)	Explain (i) Carry over factor (ii) Distribution Factor	04
Q.J	(\mathbf{a})	Analyse the beam shown in Fig 3 by consistent deformation method. Draw shear	10
	(0)	force and bending moment diagram. $EI = constant.$	10
0.4	(a)	Advantages and disadvantages of fixed beam.	04
C	(b)	A continuous beam ABC is having spans AB and BC of length 4m and 3m, respectively. Span AB is subjected to udl of 60 kN/m while span BC is subjected	10
		to udl of 80 kN/m respectively. Consider support system at A, B and C is roller	
		(simply) support. Find the support moments and draw B.M. and S.F. diagrams.	
		OR	
Q.4	(a)	Explain Muller-Breslau principle.	04
	(b)	Using Slope Deflection method, determine the support moments and reactions	10
		for the continuous beam shown in Fig. 4. Draw B.M. and S.F. diagrams.	
0.5	(a)	State and explain Clapeyron's theorem of three moments.	04

- (b) Using Kani's Method, determine the moments at A, B, C, D for the portal frame 10 as shown in Fig. 5
 - OR
- Q.5 (a) List losses in prestressing.
 (b) Draw influence line diagram for propped cantilever beam AB of length 12 m for
 - (i) Reaction at fixed end (V_a) (ii) Reaction at propped end (V_b)

04

10

www.FirstRanker.com

www.FirstRanker.com

С

