www.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION – WINTER 2018

Subject Code:2150307 Date:0		te:07/12/2018	
Subject Name:Digital Signal Processing Time: 10:30 AM TO 01:00 PM Instructions: 1. Attempt all questions.			otal Marks: 70
	2. M	ake suitable assumptions wherever necessary. gures to the right indicate full marks.	MARKS
Q.1	(a)	What is aliasing? Explain various methods to eliminate alias effect.	
	(b)	Draw the following signals, if $x(n) = \begin{cases} 1, & 2, & 3, & 4, & 5, & 6 \\ & & \uparrow & \end{cases}$	04
		1. x(-n) 2. x(-n-1) 3. x(n/2) 4. 2x(n)	
	(c)	Find out 8-point DFT of $x(n)=\{1,2,1,2\}$ using Radix -2 DIF-lalgorithm.	FFT 07
Q.2	(a)	Define following signal: 1. Multichannel Signal 2. Continuous Time Signal 3. Power Signal	03
	(b)		04
	(c)	Draw the parallel form realization of following signal $y(n) = 3y(n-1) - 2y(n-2) + x(n) + 4x(n-1)$. OR	07
	(c)	Draw the Cascade form realization of $H(z) = \frac{1 + 3Z^{-1} + 2Z^{-2}}{1 + 7Z^{-1} + 12Z^{-2}}$	07
Q.3	(a)	Prove Differentiation property of Z-Transform.	03
2.5	(b)	Find out convolution of following sequences $x(n)=5^n u(n)$ and $h(n)=u(n-5)$.	04
	(c)	Write a short not on Bilinear Transformation technique of Filter.	IIR 07

www.FirstRanker.com

www.FirstRanker.com

- Q.3 (a) Find out Cross Correlation of following sequences $x(n) = \begin{cases} 1, & 2, & 3, & 4 \\ & \uparrow & \end{cases} \text{ and } y(n) = \begin{cases} -1, & 2, & 0, & 1 \\ & \uparrow & \end{cases}$
 - (b) Find out Z-transform and Plot ROC of $x(n)=0.5^n(u(n-1)-u(n-5))$
 - (c) Use Impulse invariance method and transform following analog filter into digital filters. 07

1)
$$H_a(s) = \frac{(s+5)}{(s+5)^2 + 9}$$

2) $H_b(s) = \frac{1}{(s+1)(s+3)}$

- Q.4 (a) Enlist various properties of Discrete Fourier Series. 03
 - (b) Find out IDFT of $X(k) = \{1,2+j,1,2-j\}$.
 - (c) What is Transposed Structure? Explain how to find transposed structure with example.

OR

- **Q.4** (a) Prove: "If x(n) is real valued sequence then X(N-1) = X(k) = X(k) = X(k)".
 - (b) Find out circular convolution of $x(n)=\{1,2,3,4\}$ and $h(n)=\{4,3,2,1\}$.
 - (c) Determine the filter coefficients $h_d(n)$ for the desired frequency response of a low pass filter given by

$$H_d(e^{jw}) = \begin{cases} e^{-j5w} & for \frac{-\pi}{4} \le w \le \frac{\pi}{4} \\ 0 & for \frac{\pi}{4} \le |w| \le \pi \end{cases}$$

Use rectangular window of length 5

window of length 5
$$w(n) = \begin{cases} 1 & \text{for } 0 \le w \le 4 \\ 0 & \text{elsewhere} \end{cases}$$
Iso.

Determine h(n) also.

- Q.5 (a) Write a short not on Linear Phase Response of FIR filter.
 (b) Enlist any four Windowing methods for FIR filter design. Write
 04
 - (b) Enlist any four Windowing methods for FIR filter design. Write their equations and draw the Window Shapes.
 - (c) Explain how to remove baseline drift in ECG using Digital filters. 07

OR

- Q.5 (a) Compare IIR and FIR Filters. 03
 - (b) Write a short note on Finite word length effect in digital filters. 04
 - (c) Explain how to analyze heart variability. 07
