

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2018

•		Code:2150403			Date:16/11/	2018	
Subject Name:Basics of Reaction Engineering Time: 10:30 AM TO 01:00 PM Instructions: Total I						ks: 70	
	2.	Attempt all questions. Make suitable assumptions where Figures to the right indicate full m	_				
Q.1	(a) (b)	·					
	(c)	Write a short note on differenti of kinetic data.	al method and	integral metl	nod of analysis	07	
Q.2	(a)	Find the conversion for the reaction $A \rightarrow R$, after 1 hour in a batch reactor. $-r_A = 3C_A \mod/\text{lit.hr}$, $C_{Ao} = 1 \mod/\text{lit}$.					
	(b)	Define and explain the following i) Series reactions iii) Molecularity	ii) Pa	arallel reactio ate constant	ons	04	
	(c)	•	he first order r		n below:	07	
	(c)	Find the overall order of the irreversible reaction, $2H_2 + 2NO \rightarrow N_2 + 2H_2O$ at 296 K from the following constant volume data using equimolar amount of hydrogen and nitric oxide.					
		Total Pressure, mmHg 20 Half life, sec 26			20 360 07 67		
Q.3	(a) (b) (c)	Explain the classification of reaction. The rate constant of a reaction reported below. Calculate the a Temperature, K 273	action in details is measured at ctivation energ 293	different tem sy for this rea 303	peratures is ction.	03 04 07	
		Rate constant, k, sec ⁻¹ 2.46 x 10 ⁵	$\begin{array}{c c} & 47.5 \times 10^5 \\ \hline & \mathbf{OR} \end{array}$	576 x 10 ⁵	5480 x 10 ⁵		
Q.3	(a)						
	(b)	Consider a feed $C_{Ao} = 200$, $C_{Bo} = 200$, $C_{io} = 100$ (inert) to a steady flow reactor. The isothermal gas phase reaction is $A + 3B \rightarrow 6R$. If $C_A = 40$ at the reactor exit, what is C_B , X_A and X_B there?					
	(c)	Derive an expression to determine the kinetics by integral method for the irreversible bi-molecular elementary reaction of 2^{nd} order of the type $2A \rightarrow R$, $-r_A = kCA^2$					
Q.4	(a) (b)	-)) = kt.	03 04	

rstra	n(c) r	The irreversible reaction FirstRanker bas been studied kinetically anker. the rate of formation of product has been found to be well correlated by	c8m
		the following rate equation: $r_{AB} = kC_B^2$, independent of CA.	
		What reaction mechanism is suggested by this rate expression if the	
		chemistry of the reaction suggests that the intermediate consists of an	
		association of reactant molecules and that a chain reaction does not occur?	
		OR	
Q.4	(a)	How mixing of different composition of fluid is the key to the formation	03
		of intermediate for irreversible reactions in series?	
	(b)	Liquid A decomposes by first order bineties and in a batch resorter 500/	0.4
	(b)	Liquid A decomposes by first order kinetics, and in a batch reactor 50% of A is converted in 5 minutes. How long it will take to reach 75%	04
		conversion?	
	(c)	Write a brief note on variable volume batch reactor.	07
Q.5	(a)	Derive the performance equation of ideal plug flow reactor (PFR).	03
	(b)	Write a short note on optimum temperature progression.	04
	(c)	Define autocatalytic reactions. Derive an expression to find its kinetics.	07
	()	Explain plots of rate of reaction Vs. time and concentration Vs. time	
		OR	
Q.5	(a)	Explain the size comparison of single ideal CSTR with PFR and mention	03
		the different parameter affecting the sizes of the reactor.	
	(b)	Define recycle ratio. Derive the design equation of Recycle reactor.	04
	(c)	Product Explain the qualitative distribution for irreversible first order	07
		reactions $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ in series	

www.kitestheather.com