

www.FirstRanker.com

Enro WWW.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (NEW) EXAMINATION – WINTER 2018

Subject Code:2150503

Date:16/11/2018

Subject Name: Chemical Engineering Thermodynamics-II

Time: 10:30 AM TO 01:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) For binary azeotropic mixture deviating positively from ideality, draw vapor-liquid 03 equilibrium (VLE) diagrams.
 - (b) Describe phase rule and Duhem's theorem for non-reacting system. 04
 - (c) Define Lewis/Randall Rule. Derive Raoult's law. What are the limitations of 07 Raoult's law?
- **Q.2** (a) With neat diagram describe the effect of increasing pressure on binary T-x₁,y₁ vapor- 03 liquid equilibrium diagram.
 - (b) Describe the phenomena of retrograde condensation.
 - (c) Assuming validity of Raoult's law, draw P-x₁,y₁ diagram for binary mixture at 75 07 ⁰C. Clearly show vapor region, liquid region, bubble point and dew point curves. Data given:

At 75 0 C, P₁^{sat}=83.21 kPa and P₂^{sat}=41.98 kPa

(c) System acetone(1)/acetonitrile(2)/nitromethane(3) at 353.15 K has the overall **07** composition $z_1 = 0.45$, $z_2 = 0.35$ and $z_3 = 0.20$. Assuming that the Raoult's law is appropriate to this system, determine equilibrium pressure and vapor-liquid composition to carry out 40% vaporization. Date Given: The vapor pressures of the pure species at the 353.15 K are:

 $P_1^{sat} = 195.75 \text{ kPa}, P_2^{sat} = 97.84 \text{ kPa} \text{ and } P_3^{sat} = 50.32 \text{ kPa}$

- Q.3 (a) Define: (1) thermodynamic equilibrium, (2) chemical potential, and (3) fugacity 03 coefficient for pure species i.
 - (b) Describe graphical interpretation of following two equations relating partial molar 04 properties with solution properties.

$$\overline{\mathbf{M}}_1 = \mathbf{M} + \mathbf{x}_2 \frac{\mathrm{d}\mathbf{M}}{\mathrm{d}\mathbf{x}_1}$$
 and $\overline{\mathbf{M}}_2 = \mathbf{M} - \mathbf{x}_1 \frac{\mathrm{d}\mathbf{M}}{\mathrm{d}\mathbf{x}_1}$

(c) Will it be possible to prepare 0.1 m^3 of ethanol-water solution by mixing 0.03 m^3 **07** ethanol with 0.07 m^3 pure water? If not possible, what volume should have been mixed in order to prepare a mixture of the same strength and of required volume? Density of ethanol and water are 789 and 997 kg/m³, respectively. The partial molar volumes of ethanol and water at the desired compositions are: Ethanol = 53.6 x $10^{-6} \text{ m}^3/\text{mol}$; water = $18 \times 10^{-6} \text{ m}^3/\text{mol}$.

04

Q.3st(a) ^kFor^sideal gases, prove that the mastic angler comme is identical with through epecies 03 volume at the mixture T and P.

Ature I allu F.

 $\overline{V}_{i}^{ig} = V_{i}^{ig}$

(b) For binary mixture derive following equations to calculate fugacity coefficient from 04 virial equation of state.

$$\ln\hat{\varphi}_1 = \frac{P}{RT} \left(B_{11} + y_2^2 \delta_{12} \right)$$

- (c) Derive an expression for the fugacity coefficient of a gas obeying the equation of 07 state P(V-b)=R T and estimate the fugacity of ammonia at 10 bar and 298 K, given that $b = 3.707 \times 10^{-5} \text{ m}^3/\text{mol}$.
- Q.4 (a) Liquids A and B form an azeotrope containing 46.1 mole percent A at 101.3 kPa and 03 345 K. At 345 K, the vapor pressure of A is 84.8 kPa and that of B is 78.2 kPa. Calculate the van Laar constants.

(c) Describe Wilson and NRTL equations with their applications and limitations. 07

OR

03

03

07

Q.4 (a) Describe Poynting correction.

FirstRanker.com

- (b) Discuss the effect of temperature, pressure and liquid phase composition on relative 04 volatility of binary mixture following modified Raoult's law.
- (c) The activity coefficients in a binary system are given by $\ln\gamma_1 = Ax_2^2$ and $\ln\gamma_2 = Ax_1^2$. 07 Show that if the system forms an azoetrope, then azeotropic composition is given by

$$\mathbf{x}_{1}^{\mathrm{az}} = \frac{1}{2} \left[1 - \frac{1}{A} \ln \left(\frac{\mathbf{P}_{2}^{\mathrm{sat}}}{\mathbf{P}_{1}^{\mathrm{sat}}} \right) \right]$$

- **Q.5** (a) Describe effect of temperature on reaction equilibrium constant.
 - (b) Develop expressions for the mole fractions of reacting species as functions of the 04 reaction coordinate for:
 - (1) A system initially containing 2 mol NH_3 and 5 mol O_2 and undergoes the reaction:

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

(2) A system initially containing 3 mol H_2S and 5 mol O_2 and undergoing the reaction:

$$2H_2S(g) + 3O_2(g) \rightarrow 2H_2O(g) + 2SO_2(g)$$

(c) Explain block diagram for dew point pressure calculation.

OR

- Q.5 (a) If $G^E/RT = A x_1 x_2$ for a liquid phase, show by stability analysis that LLE is predicted 03 for $A \ge 2$.
 - (b) Briefly describe constant pressure liquid/liquid solubility diagrams. 04
 - (c) Explain the method of Lagrange's undetermined multipliers for gas phase reaction 07 to minimize total Gibbs free energy.

www.FirstRanker.com