

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

C 1	icat	BE - SEMESTER-V (NEW) EXAMINATION – WINTER 2018 Code: 2151002 Dete: 27/11	/2018	
Sul	viect	Name:Engineering Electromagnetics	/2010	
Time: 10:30 AM TO 01:00 PM Total Mark				
Instructions:				
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	MARKS	
Q.1	(a)	If three vertices of a triangle are p (6, -1, 2), q (-2, 3, -4) and r (-3, 1, 5) then determine : (a) Rpq.Rpr, (b) $Rpq \times Rpr$, (c) area of the triangle	03	
	(b)	Explain Cylindrical co-ordinate system with unit vectors, differential lengths, areas and volume.	04	
	(c)	Two infinite uniform line charges of 5 nC/m, lie along the positive and negative x and y axes in free space respectively. Find E at point $P(0,0,4)$.	07	
Q.2	(a)	State and explain Coulomb's law and get its vector notation.	03	
	(b)	Calculate the total charge enclosed within the volume defined by the universe with $\rho_V = e^{-2r}/r^2$.	04	
	(c)	Define electric field intensity (E) and write the equation of E due to a point charge and explain system of super position of charges.	07	
		OR		
	(c)	Explain boundary conditions at conductor-free space interface.	07	
Q.3	(a)	Briefly discuss stream lines.	03	
	(b)	Which are the different types of charge distributions? Hence define ρ_L , ρ_S & ρ_V .	04	
	(c)	Derive expression of Electric field due to infinite uniform sheet charge lying along Y-Z plane.	07	
Q.3	(a)	OR Calculate electric flux density at point P(2,-3,6) produced by a point charge $Q_A=55$ mille Coulombs located at Q(-2,3,-6).	03	
	(b)	State and prove divergence theorem as, $\int_{s} D. dS = \int_{v} (\nabla \cdot D) dv$	04	
Q.4	(c)	State and explain Gauss's law and its applications for symmetrical charge distributions.	07	
	(a)	Define potential difference and potential of a point.	03	
	(b)	Derive Poisson's and Laplace's equations.	04	

FirstRanker.com Firstragkederive the incremental work in the view a point charge in the incremental work in the point charge in the integral.

OR

Q.4	(a)	Define : magnetic flux density, scalar magnetic potential, vector magnetic potential,	03
	(b)	Describe boundary conditions for perfect dielectric-dielectric interface.	04
	(c)	Define and discuss Curl with necessary equations & derive point form of Amperes' law as $\nabla \times H = J$.	07
Q.5	(a)	Explain displacement current and retarded potential.	03
	(b)	State and explain Biot-Savart's law.	04
	(c)	Write down the Maxwell equation in integral and differential form and explain its physical significance.	07
		OR	
Q.5	(a)	Define: polarization, magnetization, poynting vector.	03
	(b)	Discuss boundary conditions for magnetic materials	04

(c) Magnetic field intensity $H = 6xy a_x - 3y^2 a_y$. Verify stokes theorem for region $2 \le x \le 5, -1 \le y \le 1$ and z = 0. Let the positive direction of dS be a_z . 07

