FirstRanker.com

www.FirstRanker.com

CULARAT TECHNOLOGICAL UNIVERSITY

		RF - SEMESTER_V (NEW) FXAMINATION - WINTER 2018	
Sub	iect	Code·2151908 Date·04/12	/2018
Subject Couc.2151500 Datc.04/12/2010			
Time: 10:30 AM TO 01:00 PM Total Marks: 70			
1 Attempt all questions			
	1. 2.	Attempt an questions. Make suitable assumptions wherever necessary.	
	<u> </u>	Figures to the right indicate full marks.	
		8 8	MARKS
Q.1	(a)	Draw a generalized closed loop feedback system with its components	03
	(u) (b)	Define transfer function. List important characteristics of transfer function.	04
	()	r in it is in the second se	
	(c)	Explain Force-Voltage and Force-Current analogy.	07
Q.2	(a)	Define	03
	(a)	a) Control variable	05
		b) Manipulated Variable	
		c) Process	
	(b)	Simplify the block diagram shown in figure-1.	04
	(c)	In a liquid-level system assume that the outflow rate $Q \text{ m}^3$ /sec through the	07
		out flow value is related to the head H m by $Q = K\sqrt{H} = 0.01\sqrt{H}$.	
		Assume that when the inflow rate Q_i is 0.015 m ³ /sec the head stays	
		constant. At $t = 0$ the inflow valve is closed and so there is no inflow for t	
		≥ 0 . Find the time necessary to empty the tank to half the original head. The	
		capacity C of the tank is 2 m^2 .	
			~
	(c)	Simplify the block diagram shown in <u>Hyper-2</u> . Obtain the transfer function relating $C(a)$ and $B(a)$	07
Q.3	(a)	Explain the ramp input mathematically and graphically \mathbf{x}	03
	(a) (h)	Explain the fallowing mut mathematically and graphically. $k(1+2s) \qquad k(1+2s)$	03
	(0)	For the following system: $G(S) = \frac{1}{s(1+s)(1+0.4s)^2}$ Find the value of k to	•••
		limit the steady state error to 10% for input t.	
	(c)	Draw the signal flow graph for the following setoff algebraic equation:	07
		$y_2 = ay_1 - gy_3$; $y_3 = ey_2 + cy_4$; $y_4 = by_2 - dy_4$. Hence find the gain.	
03	(a)	Discuss the effect of time constant on first order system response for unit	03
Q.J	(a)	step input	05
	(b)	Give four points difference between Block diagram method and Signal	04
	()	Flow Graph method.	
	(c)	Find the time response of a second order system for Unit step Response.	07
Q.4	(a)	Enlist limitations of Routh's stability criterion.	03
	(b)	Prove that steady state error for Step input is gives as $\mathbf{E}_{ss} = \frac{1}{1 + K_p}$, $\mathbf{K}_p =$	04
		error constant	
	(c)	Using Routh criterion, discuss about the stability for the system having	07
		characteristics equation is given as $3s' + 9s^{\circ} + 6s^{\circ} + 4s^{4} + 7s^{\circ} + 8s^{2} + 2s + 6$	
04	(n)	UK Write the draw backs of hydraulic system	03
Y.4	(a) (h)	Plot the root locus for a unity feedback system whose forward transfer	03
		function is $C(s) = \frac{10(s+1)}{s}$	νT
		$\frac{1}{s(s-3)}$	

stracker's choice A unity feedback common FirstRanker(som $\frac{k(s+13)}{s(s+3)(s+7)}$ FirstRanker.com

criterion calculate the range of k for which the system is

- a) Stable
- b) Has its closed loop, poles more negative than **-1**.
- Q.5 (a) Write three rules for drawing Signal flow graph.
 - (b) With the help of neat diagrams, explain how the direction control valves 04 are classified.
 - (c) Draw the schematic diagram of Hydraulic PID controller. Explain its 07 working and derive its transfer function.

OR

03

03

- Q.5 (a) Explain FRL unit.
 - (b) Write the comparison between a Pneumatic system and Hydraulic system. 04
 - (c) Draw the schematic diagram of Pneumatic PI controller. Explain its 07 working and derive its transfer function.

Figure-1

Figure-2

