GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2018
 Date:16/11/2018

Subject Code:2152003
Subject Name:Fluid Mechanics \& Machines
Time: 10:30 AM TO 01:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

MARKS
Q. 1 (a) Differentiate between Newtonian - Non Newtonian fluid. 03
(b) Write short note on vapour pressure. 04
(c) Derive Euler's equation of motion for flow along a stream line. $\mathbf{0 7}$
Q. 2 (a) Define atmospheric pressure. Enlist different types of pressures. 03
(b) State Pascal's law of pressure and prove it. $\mathbf{0 4}$
(c) A rectangular plane surface 3 m wide and 4 m deep lies in water in such a way that its plane makes an angle of 30° with the free surface. Determine the total pressure force and position of centre of pressure, when upper edge is 2 m below the free surface.

OR
(c) A block of wood of specific gravity 0.7 floats in water. Determine the meta-centric height of the block if its size is $2 \mathrm{~m} \times 1 \mathrm{~m} \times 0.8 \mathrm{~m}$
Q. 3 (a) Explain with sketch stable and neutral equilibrium of floating body. $\mathbf{0 3}$
(b) The velocity components in a two dimensional flow are

$$
u=\frac{y^{3}}{3}+2 x-x^{2} y \text { and } v=x y^{2}-2 y-\frac{x^{3}}{3}
$$

Show that these components represent a possible case of an irrotational flow.
(c) Derive continuity equation for three dimensional incompressible flow and reduce the same equation to 1D steady incompressible flow.

OR

Q. 3 (a) Explain the meaning of each term of Bernoulli's equation. $\mathbf{0 3}$
(b) Write short note on Compressibility and Bulk Modulus of Elasticity 04
(c) Water is flowing through a pipe having diameter of 300 mm and 200 mm at the bottom and upper end respectively. The intensity of pressure at the bottom end is $24.525 \mathrm{~N} / \mathrm{cm}^{2}$ and the pressure at the upper end is $9.81 \mathrm{~N} / \mathrm{cm}^{2}$. Determine the difference in datum head is the rate of flow through pipe is 40 lit/s.
Q. 4 (a) Write short note on boundary layer separation. 03
(b) Explain Minor loss in pipe flow.

04
(c) A plate of 600 mm length and 400 mm wide is immersed in a fluid of sp. gravity 0.9 and kinematic viscosity $10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. The fluid is moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$. Calculate
a. The boundary layer thickness
b. Drag force on one side of the plate
Q. 4 (a) What is Reynolds number ? State its physical significance. 03
(b) State the main components of centrifugal pump. 04
(c) Derive Hagen Poiseuille's equation 07
Q. 5 (a) Explain positive displacement pump. 03
(b) What is priming? Explain any one method of priming. 04
(c) A turbine is to operate under a head of 25 m at 200 rpm . The discharge 07 is $9 \mathrm{~m}^{3} / \mathrm{s}$. If the efficiency is 90%, determine
a. Specific speed of machine
b. Power generated
c. Type of turbine

OR

Q. 5 (a) What are functions of air vessels in reciprocating pump? Where they are located?
(b) Explain difference between impulse and reaction turbine.04
(c) The diameter of a centrifugal pump which is discharging $0.03 \mathrm{~m}^{3} / \mathrm{s}$ of 07 water against a total head of 20 m is 0.40 m . The pump is running at 1500 rpm . Find the head, discharge and ratio of powers of geometrically similar pump of diameter 0.25 m when it is running at 3000 rpm .

