

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

	B	BE - SEMESTER-V (NEW) EXAMINATION – WINTER 2018	
Subject Code:2152003 Date:16/1			1/2018
Subje	ect Na	ame:Fluid Mechanics & Machines	
Time: 10:30 AM TO 01:00 PM Total Max			rks: 70
Instru	ctions:		
	1. A	ttempt all questions. fake suitable assumptions wherever necessary.	
	3. Fi	igures to the right indicate full marks.	
			MARKS
Q.1	(a)	Differentiate between Newtonian – Non Newtonian fluid.	03
	(b)	Write short note on vapour pressure.	04
	(c)	Derive Euler's equation of motion for flow along a stream line.	07
Q.2	(a)	Define atmospheric pressure. Enlist different types of pressures.	03
	(b)	State Pascal's law of pressure and prove it.	04
	(c)	A rectangular plane surface 3 m wide and 4 m deep lies in water in such a way that its plane makes an angle of 30° with the free surface. Determine the total pressure force and position of centre of pressure, when upper edge is 2 m below the free surface.	07
		OR	
	(c)	A block of wood of specific gravity 0.7 floats in water. Determine the meta-centric height of the block if its size is $2 \text{ m} \times 1 \text{ m} \times 0.8 \text{ m}$	07
Q.3	(a)	Explain with sketch stable and neutral equilibrium of floating body.	03
	(b)	The velocity components in a two dimensional flow are	04
		$u = \frac{y^3}{3} + 2x - x^2y$ and $v = xy^2 - 2y - \frac{x^3}{3}$	
		Show that these components represent a possible case of an irrotational flow.	
	(c)	Derive continuity equation for three dimensional incompressible flow and reduce the same equation to 1D steady incompressible flow.	07
		OR	
Q.3	(a)	Explain the meaning of each term of Bernoulli's equation.	03
	(b)	Write short note on Compressibility and Bulk Modulus of Elasticity	04
	(c)	Water is flowing through a pipe having diameter of 300 mm and 200 mm at the bottom and upper end respectively. The intensity of pressure at the bottom end is 24.525 N/cm ² and the pressure at the upper end is 9.81 N/cm ² . Determine the difference in datum head is the rate of flow through pipe is 40 lit/s.	07
Q.4	(a)	Write short note on boundary layer separation.	03
	(b)	Explain Minor loss in pipe flow.	04
	(c)	A plate of 600 mm length and 400 mm wide is immersed in a fluid of sp. gravity 0.9 and kinematic viscosity 10^{-4} m ² /s. The fluid is moving with a velocity of 6 m/s. Calculate	07
		b. Drag force on one side of the plate	

FirstRanker.com

www.FirstRanker.com

03

OR

- Q.4(a) What is Reynolds number ? State its physical significance.03(b) State the main components of centrifugal pump.04(c) Derive Hagen Poiseuille's equation.07
- Q.5 (a) Explain positive displacement pump.
 - (b) What is priming? Explain any one method of priming. 04
 - (c) A turbine is to operate under a head of 25 m at 200 rpm. The discharge 07 is 9 m³/s. If the efficiency is 90%, determine 07
 - a. Specific speed of machine
 - b. Power generated
 - c. Type of turbine

OR

- Q.5 (a) What are functions of air vessels in reciprocating pump? Where they 03 are located?
 - (b) Explain difference between impulse and reaction turbine. 04
 - (c) The diameter of a centrifugal pump which is discharging 0.03 m³/s of water against a total head of 20 m is 0.40 m. The pump is running at 1500 rpm. Find the head, discharge and ratio of powers of geometrically similar pump of diameter 0.25 m when it is running at 3000 rpm.

www.firstRanker.com