FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

	I	BE - SEMESTER-V (NEW) EXAMINATION – WINTER 2018	6
Subject Code: 2153502 Date: 1			e: 16/11/2018
Subie	ect Na	ame: Introduction to Heat Transfer	
Time: 10:30 AM TO 01:00 PM Total Marks: 70			
	2. N	Take suitable assumptions wherever necessary.	
	3. F	igures to the right indicate full marks.	
	0. 1	-9	MARKS
01	(a)	State and define the law governing conduction	03
V .1	(u) (b)	Explain surface properties of radiation.	04
	(c)	Explain critical thickness of insulation. Derive the expression for	07
	(0)	cylinder and sphere.	01
Q.2	(a)	Define capacity and economy of evaporator.	03
	(b)	Differentiate filmwise and dropwise condensation.	04
	(c)	Derive the expression for LMTD in parallel flow heat exchanger.	07
		OR	. –
	(c)	Derive the expression for NTU in parallel flow heat exchanger.	07
Q.3	(a)	Classify the heat exchangers.	03
	(b)	Explain the concept of Black body	04
	(c)	OR	07
Q.3	(a)	Explain natural convection phenomena.	03
	(b)	Give the physical significance of (i)Prandtl number (ii)Reynold's numb	oer 04
	(c)	A steel ball of 50 mm diameter is cooled by exposing it to an air stream	n at 07
		320 K. Under these conditions the convective heat transfer coefficient	100
		W/m^2 K. Estimate the time needed to cool the steel ball from 1120 to :	520
		K. Properties of steel: density = 8000 kg/m^3 and heat capacity = 450 J	/kg
		K. Due to the high thermal conductivity of steel there are no temperat	ure
		gradients within the ball.	
Q.4	(a)	Explain mechanism of conduction in detail.	03
	(b)	What are the important dimensionless groups in convection heat transf	er? 04
	()	Explain any three with their physical significance.	07
	(C)	In a double pipe counter-current neat exchanger, the fluids are as follo (i) Inlat temperature of bot fluid = $100 ^{\circ}\text{C}$ (ii) Quilet temperature of	WS. U/
		(1) finite temperature of not fluid = 100 °C. (11) Outlet temperature of fluid = 60 °C (iii) Inlet temperature of cold fluid = 40 °C (iv) Cold fl	not
		$1000 = 00^{\circ}$ C. (11) find temperature of cold fluid = 40^{\circ} C (17) Cold fluid = 40 ° C (17) Cold fluid = 40^{\circ} outlet temperature = 80 °C. During operation, due to fouling inside	the
		nine the heat transfer rate reduced to half of the original value. Assum	ing
		the flow rates and the physical properties of the fluid don't char	ine
		Calculate LMTD (in 0 C) in the new situation.	
		OR	
Q.4	(a)	What is the significance of baffles in heat exchangers?	03
C	(b)	A small blackbody has a total emissive power of 4 kW/m^2 . Determine	its 04
		surface temperature.	
	(c)	Using Fourier's law derive an expression for heat transfer by conduct	ion 07
		through cylindrical surface.	
Q.5	(a)	Discuss in brief about Boiling point elevation.	03
	(b)	Discuss briefly about multiple effect evaporation.	04

(c)

www.FirstRanker.com

- (c) An evaporator is operating at atmospheric pressure. It is desired to 07 concentrate the feed from 5% solute to 20% solute at a rate of 5000 kg/h. Dry saturated steam at a pressure corresponding to saturation temperature of 399 K is used. The feed is at 298 K and boiling point rise is of 5 K. Overall heat transfer coefficient is 2350 W/m²K. Calculate economy and heat transfer area for evaporator. Latent heat of condensation of steam at 399 K is 2185 kJ/kg Latent heat of evaporation of water at atmospheric pressure and 373 K is 2257 kJ/kg Specific heat of feed = 4.187 kJ/kg KOR
- 0.5 (a) An evaporator operating at atmospheric pressure is fed at rate of 10000 03 kg/h of weak liquor containing 4 % caustic soda. The liquor leaving the evaporator contains 25% caustic soda. Find capacity of evaporator. 04
 - Derive Kirchhoff's law for radiation. **(b)** Discuss regimes of pool boiling in detail.

07

www.FirstRanker.com