FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Seat No.:		Enrolment No.	Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–V (OLD) EXAMINATION – WINTER 2018		
Subj		Code:150605 Date: 27/11/201	8	
Subj	ect N	ame: Structural Analysis - III		
		30 AM TO 01:00 PM Total Marks: 7	'0	
Instru		: Attempt all questions.		
	2. I	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q-1	(a) (b)	Explain type of domes with neat sketches and state their uses. Differentiate between stiffness method and flexibility method.	7 7	
Q-2	(a)	A beam in plan has radius of 8m and is supported at equally spaced 8 supports. It is loaded by a UDL of 40 KN/m. calculate the maximum values of bending moment and shear force.	7	
	(b)	Give the properties of flexibility and stiffness matrix. OR	7	
	(b)	Define the following terms: Dome, Shape factor, Load factor, collapse load, Plastic hinge, Released structure, Restrained structure.	7	
Q-3	(a) (b)	State and explain the basic assumptions made in the plastic theory. For the beam section shown in figure-1, determine the shape factor and the fully plastic moment. Take $f_y = 250$ MPs. OR	7 7	
Q-3	(a)	Calculate the shape factor for the hollow rectangular section having outer dimension $300 \text{ mm} \times 150 \text{ mm}$ and thickness 10mm.	7	
	(b)	State and explain static theorem and kinematic theorem of plastic theory.	7	
Q-4	(a) (b)	Differentiate between straight beam and curved beam. A roof of a hall having diameter 20 m is to be covered by a conical dome of 100 mm thickness and 4 m rise. Assuming live load and other loads as 1.5 KN/m ² , calculate stresses in the dome. OR	7 7	
Q-4	(a) (b)	Derive an expression for M_{ϕ} and T_{ϕ} for a curved beam fixed at the ends. A spherical dome with a span of 15m and central rise of 3m has all inclusive load of 10 KN/m ² . Calculate all the stresses at the mid height.	7 7	
Q-5	(a)	Find the matrices: $[A_D]$, $[A_{DL}]$, $[S]$ and $[D]$ with usual notations for the beam shown in Figure-2, using Stiffness method.	7	
	(b)	Find the matrices: $[D_Q]$, $[D_{QL}]$, $[F]$ and $[Q]$ with usual notations for the beam shown in Figure-2. Use Flexibility method assuming vertical support reaction at B (R _B) and vertical support reaction C (R _C) as redundant. OR	7	
Q-5	(a)	Derive the Flexibility Matrix [F] for the beam shown in Figure-3, assuming vertical reactions at supports B, C and D as redundant.	7	

FirstRanker.com

www.FirstRanker.com

7

(b) Derive the Stiffness matrix [S] for the beam shown in Figure-3.

2