\qquad Enrolment No. \qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (OLD) EXAMINATION - WINTER 2018

Subject Code: 150605
Date: 27/11/2018
Subject Name: Structural Analysis - III
Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q-1 (a) Explain type of domes with neat sketches and state their uses. 7
(b) Differentiate between stiffness method and flexibility method.

Q-2 (a) A beam in plan has radius of 8 m and is supported at equally spaced 8
supports. It is loaded by a UDL of $40 \mathrm{KN} / \mathrm{m}$. calculate the maximum values of bending moment and shear force.
(b) Give the properties of flexibility and stiffness matrix.
(b) Define the following terms:

Dome, Shape factor, Load factor, collapse load, Plastic hinge, Released structure, Restrained structure.

Q-3 (a) State and explain the basic assumptions made in the plastic theory. 7
(b) For the beam section shown in figure-1, determine the shape factor and the fully plastic moment. Take $\mathrm{f}_{\mathrm{y}}=250$ MPs.

OR

Q-3 (a) $\begin{aligned} & \text { Calculate the shape factor for the hollow rectangular section having outer } \\ & \text { dimension } 300 \mathrm{~mm} \times 150 \mathrm{~mm} \text { and thickness } 10 \mathrm{~mm} \text {. }\end{aligned}$
(b) State and explain static theorem and kinematic theorem of plastic theory. 7

Q-4 (a) Differentiate between straight beam and curved beam. 7
(b) A roof of a hall having diameter 20 m is to be covered by a conical dome of 100 mm thickness and 4 m rise. Assuming live load and other loads as 1.5 $\mathrm{KN} / \mathrm{m}^{2}$, calculate stresses in the dome.

Q-4 (a) Derive an expression for M_{ϕ} and T_{ϕ} for a curved beam fixed at the ends.
(b) A spherical dome with a span of 15 m and central rise of 3 m has all inclusive
load of $10 \mathrm{KN} / \mathrm{m}^{2}$. Calculate all the stresses at the mid height.
Q-5 (a) Find the matrices: $\left[A_{D}\right],\left[A_{D L}\right],[S]$ and $[D]$ with usual notations for the beam shown in Figure-2, using Stiffness method.
(b) Find the matrices: $\left[\mathrm{D}_{\mathrm{Q}}\right],\left[\mathrm{D}_{\mathrm{LL}}\right],[\mathrm{F}]$ and $[\mathrm{Q}]$ with usual notations for the beam shown in Figure-2. Use Flexibility method assuming vertical support reaction at $B\left(R_{B}\right)$ and vertical support reaction $C\left(R_{C}\right)$ as redundant.

OR

Q-5 (a) Derive the Flexibility Matrix [F] for the beam shown in Figure-3, assuming vertical reactions at supports B, C and D as redundant.
(b) Derive the Stiffness matrix [S] for the beam shown in Figure-3.

Figure: 1

Figure: 2

