FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (OLD) EXAMINATION – WINTER 2018			
Su	Subject Code:151002Date: 16/11/2018Subject Name: Engineering ElectromagneticsTime: 10:30 AM TO 01:00 PMTinstructions:Total Marks: 70Instructions:1. Attempt all questions.2. Make suitable assumptions wherever necessary.		
Su Ti Ins			
	3.	Figures to the right indicate full marks.	
Q.1	(a)	Explain the concept of dot product and vector product with the help of proper equations and vector diagrams.	07
	(b)	State Coulomb's law. Derive the expression for following:i. Scalar & Vector form of Coulomb's law,ii. Electric field intensity.	07
Q.2	(a)	What do you mean by boundary conditions? Derive the boundary conditions at the interface between two dielectric materials with permittivities ε_1 and ε_2	07
	(b)	Write down point and integral forms of all four Maxwell's equations for steady & time-varying electro-magnetic fields.	07
	(b)	OR An infinitely long coaxial cable is carrying current I by the inner conductor of radius 'a' and –I by the outer conductor of radii 'b' and 'c', where c>b. Derive the expressions for H at (i) $\rho < a$, (ii) $a < \rho < b$, (iii) $b < \rho < c$, (iv) $\rho > c$.	07
Q.3	(a)	Using del operator, explain the following in brief: i. Gradient of a scalar ii. Curl of a vector	07
	(b)	Write a detailed note on the divergence & its physical interpretation.	07
Q.3	(a)	Derive the expression for the following: i. The divergence theorem ii. Stoke's theorem	07
	(b)	Illustrate the concept of <i>skin depth</i> and <i>skin effect</i> in good conductors.	07
Q.4	(a)	Derive i. Maxwell's 1 st equation for electrostatics ii. Maxwell's 3 rd equation for electrostatics	07
	(b)	Given the potential field V=2x ² y - 5z, and a point $P(-4, 3, 6)$, find following at point P : the potential V, the electric field intensity E , the direction of E , the electric flux density D , and the volume charge density ρ_{v} .	07
Q.4	(a)	Derive i. Lorentz force equation ii. Point form of Ohm's law	07
	(b)	Three infinite uniform sheets of charges are located in the free space as follows: 3 nC/m^2 at $z = -4$, 6 nC/m^2 at $z = 1$, and -8 nC/m^2 at $z = 4$. Determine E at the point $P(2, 5, -5) \& Q(4, 2, -3)$.	07
Q.5	(a)	A current filament carrying 15 A in the \mathbf{a}_z direction lies along the entire z axis.	07

(a) A current filament carrying 15 A in the \mathbf{a}_z direction lies along the entire z axis. Find **H** in rectangular coordinates at: (i) $P_A(20^{1/2}, 0, 4)$.

www.FirstRanker.com

www.FirstRanker.com

(b) Find the magnitude of current density in a sample of silver for which $\sigma = 6.17 \times 10^7$ S/m and $\mu_e = 0.0056$ m²/V·s if: (a) the drift velocity is 1.5 μ m/s; (b) the electric field intensity is 1 mV/m; (c) the sample is a cube 2.5 mm on a side having a voltage of 0.4 mV between opposite faces; (d) the sample is a cube 2.5 mm on a side carrying a total current of 0.5 A.

OR

- Q.5 (a) Determine an expression for the volume charge density associated with each of 07 the following D fields:
 - (a) $\mathbf{D} = 4xy/z \mathbf{a}_{x} + 2x^{2}/z \mathbf{a}_{y} 2x^{2}y/z^{2} \mathbf{a}_{z};$
 - (b) $\mathbf{D} = z \sin \varphi \, \mathbf{a}_{\rho} + z \cos \varphi \, \mathbf{a}_{\phi} + \rho \sin \varphi \, \mathbf{a}_{z};$
 - (b) A slab of dielectric material has a relative dielectric constant of 3.8 and contains a uniform electric flux density of 8 nC/m². If the material is lossless, find: (a) *E*; (b) *P*; (c) the average number of dipoles per cubic meter if the average dipole moment is 10⁻²⁹ C⋅m.

www.FirstRanker.com