

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (OLD) EXAMINATION - WINTER 2018

Subject Code:151003	Date: 27/11/2018
Subject Name: Integrated Circuits And Applications	
Time: 10:30 AM TO 01:00 PM	Total Marks: 70

Instructions:

1.	Attempt all	questions.
----	-------------	------------

2. Make suitable assumptions wherever necessary.

	3. Figures to the right indicate full marks.		
			MARKS
Q.1	(a)	Explain the internal block diagram of OP-AMP in detail with the function of each block.	07
	(b)	Which type of feedback is used in inverting op-amp? Derive exact expressions for voltage gain, input resistance, output resistance and bandwidth for inverting op-amp.	07
Q.2	(a)	Explain following terms related to op-amp: 1. CMRR, 2. PSRR, 3. Slew Rate, 4. Input offset current, 5. Input offset voltage.	07
	(b)	Explain the concept of virtual ground in OP-AMP and why open loop op-amp configurations are not used in linear application? OR	07
	(b)	Explain application of op-amp (Inverting configuration) as summing,	07
	(6)	Scaling and averaging circuit.	0,
Q.3	(a)	Draw and derivation the output voltage in term of input voltage of basic integrator using an op-amp. What are the Problems associated with this configuration? How they are overcome?	07
	(b)	Explain Schimitt trigger circuit along with circuit diagram and necessary waveforms. State its advantages and applications. OR	07
Q.3	(a)	Explain triangular wave generator circuit.	07
	(b)	Analyze second order butterworth High Pass filter. Draw its frequency response and state design procedure.	07
Q.4	(a)	Draw and explain Monostable multivibrator using 555 timer IC.	07
	(b)	Draw the circuit diagram of monostable multivibrator using IC 555. Calculate the component values if the controlled door should remain open for 15 secs after a trigger signal is received. The DC voltage available is 10V.	07
0.4	()	OR	0=
Q.4		Expain opration of Astable multivibrator using IC 555.	07 07
0.	(b)	Design an astable multivibrator for an output frequency of 5 KHz and duty cycle 40%. Consider C=0.047 μ F.	07
Q.5	(a)	What are the different types of voltage regulators? Discuss LM317 based adjustable voltage regulator. Indicate bypass capacitors to improve transient response and protective diodes in the connection diagram.	07
	(b)	State the applications of operational transconductance amplifier and explain any one with necessary circuit and derivation	07

www.FirstRanker.com www.FirstRanker.com
(a) Draw block diagram of basic PLL and explain operation of each of the 07 **Q.5** blocks.

What do you understand by precision rectifier circuit? Illustrate op-**07 (b)** amp based full-wave rectifier circuit with its complete functionality.

MMM.FirstRainker.com