www.FirstRanker.com

Enrol WWW.FirstRanker.com

## **GUJARAT TECHNOLOGICAL UNIVERSITY** BE - SEMESTER-V (OLD) EXAMINATION – WINTER 2018

Subject Code:151601

**Subject Name: Computer Oriented Statistical Methods** 

Time: 10:30 AM TO 01:00 PM

irstRanker.com

Total Marks: 70

Date: 30/11/2018

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define absolute error, relative error, truncation error and round off error. 07 Evaluate the sum  $s = \sqrt{3} + \sqrt{5} + \sqrt{7}$  to four significant digits and find its absolute and relative error.
  - (b) Using Newton's divided difference interpolation, compute the value of f(6)07 from the table given below:

| Х    | 1 | 2 | 7 | 8 |
|------|---|---|---|---|
| f(x) | 1 | 5 | 5 | 4 |

- Q.2 (a) Perform three steps of False Position method to find a real root of  $f(x) = x^3 2x 5$ . 07
  - (b) Show that the Newton-Raphson method is 2<sup>nd</sup> order convergent. 07

## OR

- (b) State Budan's theorem. Solve  $x^4 4x^3 + 3x^2 10x + 8 = 0$  by Budan method, in the interval [-1, 0] and [0, 1].
- Q.3 (a) Solve the following system of equations by Gauss Seidel method : 07 x+y+54z = 110, 27x+6y-z = 85, 6x+15y+2z = 72.
  - (b) Use Lagrange's interpolation to find the value of when x = 10 if the following 07 values of and are given:

| X | 5  | 6  | 9  | 11 |
|---|----|----|----|----|
| У | 12 | 13 | 14 | 16 |
|   |    | OR |    |    |

- Q.3 (a) Write Gauss Elimination algorithm. Also include pivotal condensation. 07
  - (b) Derive the Recurrence relation for Chebyshev polynomials and using it define 07  $T_2(x), T_3(x)$  and  $T_4(x)$ .
- Q.4 (a) Write an algorithm for cubic spline interpolation.
  - (b) Fit a second degree polynomial to the following data using least squares method.

| Х  | 0 | 1   | 2   | 3   | 4   |  |
|----|---|-----|-----|-----|-----|--|
| у  | 1 | 1.8 | 1.3 | 2.5 | 6.3 |  |
| OR |   |     |     |     |     |  |

Q.4 (a) Use Runge kutta method of order 4 to compute y(0.2) given that y(0) = 1, and 07  $dy/dx = x + y^2$ . Take h= 0.1

(b) Fit a curve of type  $y = ax^b$  for the following data:

| Х | 1    | 2    | 3     | 4     |
|---|------|------|-------|-------|
| У | 2.50 | 8.00 | 19.00 | 50.00 |

07

07

07



| 5 ( | choicear | www.FirtstRan | ker.com <sup>ar</sup> | www.#ifsitRank | er.com |
|-----|----------|---------------|-----------------------|----------------|--------|
|     | 2009     | 464           | 2014                  | 540            |        |
|     | 2010     | 515           | 2015                  | 557            |        |
|     | 2011     | 518           | 2016                  | 571            |        |
|     | 2012     | 467           | 2017                  | 586            |        |
|     | 2013     | 502           | 2018                  | 612            |        |

(b) Derive trapezoidal rule. Evaluate

6

 $\int (1/(1+x)) dx$ 

0

Taking n = 6, correct to four significant digits by Simpson's  $1/3^{rd}$  rule.

| OR |  |
|----|--|
|----|--|

(a) Calculate seasonal indices by the ratio-to-moving average method from the 07 Q.5 following data:

| Year | Quarter I | Quarter II | Quarter III | Quarter IV |
|------|-----------|------------|-------------|------------|
| 2016 | 68        | 62         | 61          | 63         |
| 2017 | 65        | 58         | 66          | 61         |
| 2018 | 68        | 63         | 63          | 67         |

(b) The sale of a company rose from Rs.60000 in the month of October to Rs.69000 in the month of November. The seasonal indices for these two months are 105 and 140 respectively. The owner of the company was not at all satisfied with the rise of sales in the month of November by Rs.9000. He expected much more because of the seasonal index for that month. What was his estimate of sales for the month of November?



07

07