

www.FirstRanker.com

www.FirstRanker.com

	BE - SEMESTER-VI (NEW) EXAMINA	AL UNIVERSITY ATION – WINTER 2018	
Subject Code:2160104		Date:30/11/2018	
Subj	ject Name:Basic Control Theory		
Time: 02:30 PM TO 05:00 PM Instructions:		Total Marks: 70	
	 Attempt all questions. Make suitable assumptions wherever necessa Figures to the right indicate full marks. 	ıry.	
Q-1 (a)	Define: SISO, SIMO and MIMO System with examples.		03
(b)	What do you mean by analogous system? Explain Force to Voltage Analogy.		04
(c)	Explain Closed Loop Control System with one practical example.		07
Q-2 (a)	List rules for Block Diagram Reduction Techniques.		03
(b)	Compare Signal Flow Graph and Block Diagram Techniques.		04
(c)	Obtain the transfer function $C(s)/R(s)$ from sign	al flow graph of the system given below: G5 -H4	07

(c) Find the transfer function of the system given below through block diagram reduction method: 07

FirstRanker.com

www.FirstRanker.com

- Q-3 (a) List equation for steady state errors error constants Kp, Ki and Kd. 03
 - (b) A unity feedback system is characterized by the open loop transfer function 04 $G(s) = \frac{1}{S(0.5S+1)(0.2S+1)}$. Determine the steady state errors for unit step, unit ramp and unit acceleration input.
 - (c) What is transfer function? Gives one advantage and disadvantage of its. Derive transfer 07 function of impulse response.

OR

- **Q-3 (a)** Write down zita (ζ) value for un damped, under damped, over damped and critically damped **03** system.
 - (b) The open loop transfer function of a unity feedback system is $G(S) = \frac{4}{S(S+1)}$. Determine the nature of response of the closed loop system for a unity step input signal. Also determine the rise time, peak time, peak overshoot, and settling time for 2% and 5%.
 - (c) Distinguish between Conventional Control Theory and Modern Control Theory. 07
- **Q-4 (a)** By using Routh Criterion, Determine the stability of the system described by characteristics 03 equation: $S^4 + 3S^3 + 5S^2 + 6S + 5 = 0$.
 - (b) Draw the Polar Plot of $G(s) = \frac{5}{S(S+1)}$. 04
 - (c) Draw the root locus of for the given transfer function $G(s) = \frac{k}{S(S+2)(S+5)}$. Determine the value 07 of k.

OR N

Q-4 (a)	Determine Type and Order of the system. $G(s) = \frac{10}{S(S+5)(6S+1)}$.	03
Q-4 (a)	Determine Type and Order of the system. $G(s) = \frac{1}{S(S+5)(6S+1)}$.	03

- (b) Write the rules for drawing root locus. 04
- (c) Draw the bode plot and determine the gain crossover and phase crossover frequencies for the 07 transfer function $G(s) = \frac{12}{S(0.5S+1)(0.1S+1)}$.
- Q-5 (a)For a RL circuit, derive the state model of the system.03(b)What is different between absolute Stability and Relative Stability?04(c)Explain PID Controller. List Advantages, Disadvantages and Applications of it.07OR
- Q-5 (a)Explain ON OFF Controller.03(b)Compare PI, PD and PID Controller.04(c)Explain PI Controller. List Advantages, Disadvantages and Applications of it.07
