FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - WINTER 2018			
Subject Code:2160506 Date:07/12/2)18
Subj	ect I	Name:Chemical Reaction Engineering - I	
Time: 02:30 PM TO 05:00 PM Total Marks: 70			70
Instru	ction	S:	
	1.	Attempt all questions.	
	2. 3.	Figures to the right indicate full marks.	
		r gures to the right indicate full marks.	
Q.1	(a)	Classify reactions giving example of each	03
	(b)	Differentiate elementary and non elementary reactions.	04
	(c)	List various theories of temperature dependency on rate of reaction and	07
		discuss any one in detail.	
Q.2	(a)	Write a short note on 'Variable volume batch reactor'	03
	(b)	The rate constant k at 27°C is 1.3×10^{-3} sec ⁻¹ and its frequency factor is	04
		2.785*10 ⁻⁶ sec ⁻¹ . Determine its Entropy of activation and Enthalpy of	
		activation.	
	(c)	Derive integrated rate expression for a liquid phase reaction	07
		$2A \rightarrow$ Products.	
		OR	
	(c)	At certain temperature, the half-life period and initial concentration for a	07
		reaction are,	
		$t_{1/2} = 420$ sec; $C_{A0} = 0.405$ mole/lit	
		Calculate the order of reaction and rate constant of the reaction	
Q.3	(a)	Define space time and space velocity.	03
	(b)	Derive performance equation for a ideal batch reactor	04
	(c)	The reaction $A \rightarrow B$ $r = k C_{AO}^2$ occurs in CSTR with 90% Conversion if k=	07
	(0)	0.5 liter/mole min, $C_{A0} = 2$ mole/liter and $v = 4$ liter/ min, what residence	07
		time and reactor volume will be required?	
		OR	
Q.3	(a)	Explain the method for searching the mechanism of chemical reaction.	03
	(b)	Compare and contract Integral method of analysis with differential method	04
	(0)	of analysis of kinetic data	04
	(\mathbf{c})	In a batch reactor, assuming first order kinetics, the conversion of a liquid	07
	(C)	reactant A is 70% in 13 min. Find the space time required to effect this	07
		conversion in a plug flow reactor and a mixed flow reactor.	
Q.4	(a)	Discuss equal sized mixed flow reactors in series	03
	(b)	Derive performance equation for a CSTR.	04

FirstRanker.com

Firstranker' The thermal cracking of the tranker cont in a tubular were stranker conf scale production of ethylene. The reaction is

$C_2H_6 \rightarrow C_2H_4 + H_2$

The ethane fed at the rate of 10 tons/hr, is diluted with steam (0.5 mole of steam: 1 mole of Ethane) before entering the reactor to reduce amount of undesired products. The reaction is maintained at 900 °C and 1.4 atm total pressures. Reaction is first order irreversible and rate constant is 12.8 sec⁻¹ at 900°C. Calculate the volume of reactor required for 60% conversion of ethane per pass.

OR

- Show how fractional conversion X, is related to temperature for any 0.4 03 **(a)** exothermic reaction being carried out in an adiabatic batch reactor. 04
 - Write a short note on Recycle reactor. **(b)**
 - Derive the equation in terms of concentration for irreversible reactions in (c) 07 series for uni-molecular type first-order reaction such as

$$A \xrightarrow{k_1} \to R \xrightarrow{k_2} \to S$$

- Discuss the effect of pressure on equilibrium conversion as predicted by Q.5 (a) 03 thermodynamics keeping temperature fixed
 - Discuss the method of maximization of rectangles applied to find the **(b)** 04 optimum intermediate conversion and optimum sizes of two mixed reactors in series
 - For the parallel decomposition of A where R is desired and $C_{A0}=1$ 07 (c)

What is the maximum C_R , we may expect in an isothermal operation in Batch Reactor , where the value of $r_R = 1$, $r_S = 2C_A$, $r_T = C_A^2$

OR

Discuss the effect of inert on equilibrium conversion as predicted by **Q.5** 03 **(a)** thermodynamics keeping temperature fixed

- Explain optimum temperature progression in brief. 04 **(b)**
- Describe quantitative discussion about product distribution for reactions in (c) 07 parallel.