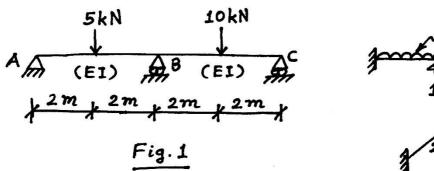
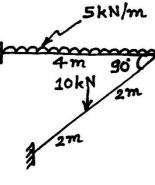
FirstRanker.com

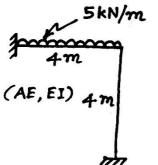
www.FirstRanker.com

Enrolwew.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY


BE - SEMESTER-VI (NEW) EXAMINATION – WINTER 2018			
			2018
0			
Subject Name:Computational Mechanics			
Time: 02:30 PM TO 05:30 PMTotal Marks: 70			
Instructions: 1. Attempt all questions.			
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
		Draw neat sketch wherever necessary.	
01	(a)	Evaloin symmetry and anti-symmetry with past skatches	03
Q.1	(a) (b)	Explain symmetry and anti-symmetry with neat sketches. Derive S_M matrix for beam member.	03 04
	(c)	Determine joint displacements for the beam shown in fig.1. Take EI =	07
	(0)	constant.	01
Q.2	(a)	Formulate combined joint load vector for the grid shown in fig.2.	03
	(b)		04
		deformations.	
	(c)	Formulate S_{MS} matrix for grid member.	07
		OR Determine joint displacements for the leaded beem shown in fig 1, if the	07
	(c)	Determine joint displacements for the loaded beam shown in fig.1, if the support B sinks by 10mm. Take $EI = 30000 \text{ kNm}^2$.	07
		support D sinks by tohini. Take Li – 50000 kivin .	
Q.3	(a)	Determine joint displacements and member forces of the truss shown in	14
Ľ	. ,	fig.2. All the members have same axial rigidity. Take EA = constant.	
		OR	
Q.3	(a)		14
		shown in fig.3. Take EI = 30000 kNm^2 , EA = $2 \times 10^6 \text{ kN}$.	
04	(a)	Write steps of finite element analysis.	03
Q.4	(a) (b)		03 04
	(c)	Find nodal displacements and element stresses of the bar shown in fig.4.	07
	(0)	Take $E = 200$ GPa.	01
		OR	
Q.4	(a)	Explain process of discretization.	03
	(b)		04
	(c)	Find nodal displacements and nodal reactions for the beam shown in fig.5.	07
		Take $EI = constant$.	
Q.5	(a)	Derive strain displacement matrix of CST element.	07
Z .0	(b)	-	07
		stress condition and unit thickness of the element. Take $\vec{E} = 2 \times 10^5 \text{ N/mm}^2$,	
		$\mu = 0.3.$	
		OR	
Q.5	(a)		07
	(b)		07
		given as $u1 = 0.05$ mm, $v1 = 0.02$ mm, $u2 = 0.0$ mm, $v2 = 0.0$ mm, $u3 = 0.04$ mm, $v3 = 0.01$ mm. Determine the element stresses. Take $E = 200$ GPa	
		0.04mm, v3 = 0.01mm. Determine the element stresses. Take E = 200GPa, $v = 0.3$, Use unit thickness for plane stress element.	
		5 5.5, Obe unit unexiless for plane subsis clement.	




www.FirstRanker.com

www.FirstRanker.com

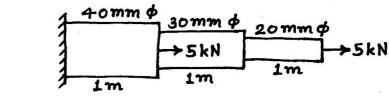
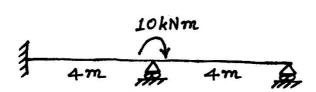



Fig.4

Fig.3

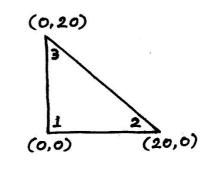


Fig.6