1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Draw neat sketch wherever necessary.
Q. 1 (a) Explain symmetry and anti-symmetry with neat sketches. 03
(b) Derive S_{M} matrix for beam member.

04
(c) Determine joint displacements for the beam shown in fig.1. Take EI $=\mathbf{0 7}$ constant.
Q. 2 (a) Formulate combined joint load vector for the grid shown in fig.2. 03
(b) Explain various types of skeleton structures with their internal forces and deformations.
(c) Formulate S_{MS} matrix for grid member.

OR

(c) Determine joint displacements for the loaded beam shown in fig.1, if the support B sinks by 10 mm . Take $\mathrm{EI}=30000 \mathrm{kNm}^{2}$.
Q. 3 (a) Determine joint displacements and member forces of the truss shown in 14
fig.2. All the members have same axial rigidity. Take EA = constant.

OR

Q. 3 (a) Determine joint displacements and support reactions of the plane frame
shown in fig. 3 . Take $\mathrm{EI}=30000 \mathrm{kNm}^{2}, \mathrm{EA}=2 \times 10^{6} \mathrm{kN}$.
Q. 4 (a) Write steps of finite element analysis.
(b) Explain plane stress and plane strain problems. $\mathbf{0 4}$
(c) Find nodal displacements and Clement stresses of the bar shown in fig.4. Take $\mathrm{E}=200 \mathrm{GPa}$.

OR
Q. 4 (a) Explain process of discretization.

03
(b) Using potential energy approach, derive the equation $[\mathrm{k}]\{\mathrm{q}\}=\{\mathrm{f}\}$. $\mathbf{0 4}$
(c) Find nodal displacements and nodal reactions for the beam shown in fig.5.

Take EI = constant.
Q. 5 (a) Derive strain displacement matrix of CST element.
(b) Evaluate stiffness matrix of the CST element shown in fig.6. Assume plane stress condition and unit thickness of the element. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, $\mu=0.3$.

OR

Q. 5 (a) Explain various types of non-linearity with neat sketches.
(b) For the plane stress element shown in fig.6, the nodal displacements are given as $\mathrm{u} 1=0.05 \mathrm{~mm}, \mathrm{v} 1=0.02 \mathrm{~mm}, \mathrm{u} 2=0.0 \mathrm{~mm}, \mathrm{v} 2=0.0 \mathrm{~mm}, \mathrm{u} 3=$ $0.04 \mathrm{~mm}, \mathrm{v} 3=0.01 \mathrm{~mm}$. Determine the element stresses. Take E $=200 \mathrm{GPa}$, $v=0.3$, Use unit thickness for plane stress element.

Fig. 1

Fig. 2

Fig. 3

Fig. 5

Fig. 6

