FirstRanker.com

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

Sul	hiect	BE - SEMESTER–VI (NEW) EXAMINATION – WINTER 2018 Code:2161707 Date:16/11/	2018
Sul	hiect	Name: Control System Design	-010
Tir	οject no• 0'	7.20 DM TO 05.00 DM Total Mark	a. 70
Inst	Inne, v2.30 I w I O 03.00 I w I I I O 141 WAT		
11150	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
			MARKS
Q.1	(a)	Consider a linear system described by differential equation $\dot{i} = 2\dot{i} + \alpha = \dot{i} + \alpha$	03
		y + 2y + y - u + u Test the controllability of the system by Kalman's test	
	(b)	Explain basic electrical lead-lag compensator	04
	(\mathbf{c})	With suitable example, explain the robust PID Controller	07
	(0)	() an balancie champie, explain ale recust i in controller.	07
Q.2	(a)	Discuss about the advantages of state space method over conventional method.	03
	(b)	Write steps to design a lag compensator for a given system in frequency domain.	04
	(c)	Obtain state model of field-controlled DC servomotor. Choose θ , $\dot{\theta}$ and i_f as state variables	07
		OR	
	(c)	Design a lag compensator using root-locus method for a system whose open-	07
		loop transfer function is given by	
		C(c) = K	
		$G(s) = \frac{1}{s(s+1)(s+4)}$	
		The system is to be compensated for following specifications:	
		Damping ratio = 0.5, settling time = 10 sec, velocity error constant $\geq 5 \text{ sec}^{-1}$	
Q.3	(a)	Give the properties of state transition matrix.	03
	(b)	Give the design steps of lead compensator in frequency domain.	04
	(c)	Design a phase lead compensation network in frequency domain for a system	U7
		K	
		$G(s)H(s) = \frac{1}{s^2(1+0.05s)}$	
		The system have acceleration error co-efficient $=100 \text{ sec}^{-2}$ for the phase	
		margin of 20°	
		OR	
Q.3	(a)	Obtain the state-space equation and output equation for the system described	03
		by differential equation given by	
		$\ddot{y} + 4\ddot{y} + 5\dot{y} + 2y = 2\ddot{u} + \ddot{u} + \dot{u} + 2u$	
	(b)	Explain dead beat response with suitable example.	04
~ .	(c)	Explain robustness of the system with reference to system sensitivity.	07
Q.4	(a)	Explain Internal Model Design.	03
	(D)	Explain the following terms for robust control system.	04
		(i) sensitivity function (ii) complementary sensitivity function	
		(iii) additive perturbation	
		(iv) multiplicative perturbation	
	(c)	Explain the control of uncertain parameter in robust control system.	07
	. /	•	

www.FirstRanker.com

		OR	
Q.4	(a)	Determine the transfer function from the following data.	03
		$A = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \end{bmatrix}, D = 0$	
	(b)	Discuss the Full state Controller and Observer with associated block diagram.	04
	(c)	State and derive Ackermann's formula for determination of the state feedback	07
		gain matrix K.	
Q.5	(a)	Explain Ricatti Equation.	03
•	(b)	Explain Liapnov's stability criterion theorem.	04
	(c)	Determine the state transition matrix and solution of the system described by	07
		the vector-differential equation	
		$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$	
		Where $u(t) = 1, t \ge 0$	
		= 0, t < 0	
		Assume the system to be initially relaxed.	
		OR	
Q.5	(a)	Explain performance index of optimal control system.	03
	(b)	Explain positive definite and positive semidefinite function.	04
	(c)	Explain Linear Quadratic Regulator.	07

www.FirstRanker.com