

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-VI (NEW) EXAMINATION - WINTER 2018	
Subj	ect C	ode:2161901 Date:07/12	2/2018
Subj	ect N	ame:Dynamics of Machinery	
Time	e: 02:3	30 PM TO 05:00 PM Total Mar	ks: 70
Instru	ctions		
	1. A	Attempt all questions.	
		Aake suitable assumptions wherever necessary.	
	3. F	Figures to the right indicate full marks.	MADEC
			MARKS
Q.1	l (a)		03
		Resonance	
	(b)		04
		Graphical Method.	
	(c)	• • • • • • • • • • • • • • • • • • • •	07
		Explain clearly the terms static balancing and dynamic balancing. State	
		the necessary conditions to achieve them.	
Q.2	2 (a)		03
		affecting it?	
	(b)		04
		assembly? Why reciprocating masses are partially balanced?	
	(c)		07
		along the shaft. The mass B is 7 kg and radii of C and D makes an angle	
		of 90° and 240° respectively (counterclockwise) with radius of B,	
		which is horizontal. Find the magnitude of A, C and D and angular	
		position of A so that the system may be completely balance. Solve	
		problem by analytically.	
	(a)		07
	(c)	A single cylinder reciprocating engine has speed 240 rpm, stroke 300 mm, mass of reciprocating parts 50 kg, mass of revolving parts at 150	U/
		mm radius 30 kg. If all the mass of revolving parts and two-third of the	
		mass of reciprocating parts are to be balanced, find the balance mass	
		required at radius of 400 mm and the residual unbalanced force when	
		the crank has rotated 60° from IDC.	
Q.3	3 (a)		03
	(41)	free vibration of single degree of freedom system.	
	(b)		04
	()	rotor and without damping.	
	(c)		07
	. ,	performance for a damped free vibration	
		OR	
Q.3	3 (a)	Write short note on "Torsionally equivalent shaft"	03
	(b)		04
		Equivalent Damper in series.	
	(c)		07
		Determine the undamped and damped natural frequencies of the	
_		system, neglecting the mass of the isolators.	. -
Q.4		± ,	03
	(b)	Define force transmissibility. Explain with neat sketch transmissibility	04

curves.

www.FirstRanker.com www.FirstRanker.com
(c) A 40 kg machine is supported by four springs each of stiffness 250 07
N/m. The rotor is unbalanced such that the unbalance effect is equivalent to a mass of 5 kg located at 50mm from the axis of rotation.
Find the amplitude of vibration when the rotor rotates at 1000 rpm and 60 rpm. Assume damping coefficient to be 0.15

OR

- Q.4 (a) Explain Vibration Isolation, What are the various materials used for vibration isolation?
 - (b) What is damped vibration? What are the different types of damping methods?
 - (c) Estimate the approximate fundamental natural frequency of the system shown in Fig. (b) Using Rayleigh's method. Take: m=1kg and K=1000 N/m.
- Q.5 (a) What are the various sources of external excitations?
 - (b) Define logarithmic decrement and derive an expression for it?
 - (c) The damped vibration record of a spring-mass-dashpot system shows the following data.

 Amplitude on second cycle = 0.012m; Amplitude on third cycle = 0.0105m; Spring constant k = 7840 N/m; Mass m = 2kg. Determine the

OR

Q.5 (a) Define following terms: Zero frequency and Node point. 03

damping constant, assuming it to be viscous.

- (b) Why the measurement of vibration is necessary? What do you mean by vibration monitoring of machine? Enlist different vibration measuring instruments.
- (c) Explain Jump phenomenon and cross over shock in case of cam and follower

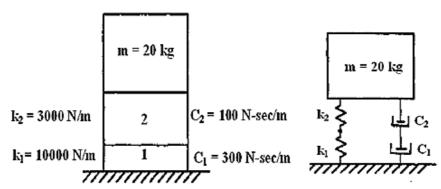
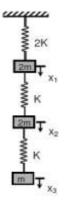



Fig (a) - Que : 3 C (OR)

Fig(b) - Que: 4C(OR)