GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-VI (OLD) EXAMINATION - WINTER 2018
 Date: 15/12/2018

Subject Code:160602

Subject Name: Applied Fluid Mechanics

Time: 02:30 PM TO 05:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Abstract

Q. 1 (a) Derive the continuity equation for one dimensional flow and discuss its application.

(b) Derive an expression for the velocity distribution of viscous flow through a circular pipe and prove that the ratio of maximum velocity to average velocity is 2.
Q. 2 (a) Explain the Navier-Stokes equation of motion for one dimensional flow. What do you understand by initial conditions and boundary conditions?
(b) Derive the Hagen- Poiseuille equation for viscous flow through a circular pipe.
(b) Oil of specific gravity 0.82 is pumped through a horizontal pipe line 15 cm in diameter \& 3 km long at the rate of 900 liters per minute. The pump has an efficiency of 68% \& requires 7.35 kw to pump the oil. Determine the dynamic viscosity of oil \& verify whether the flow is laminar?
Q. 3 (a) A plate $1 \mathrm{~m} \times 1 \mathrm{~m}$ moves through air of density $1.15 \mathrm{~kg} / \mathrm{cum}$ at $36 \mathrm{~km} / \mathrm{hour}$. 07
Determine (i) The drag force, (ii) The lift force, (iii) The resultant force, and (iv)
The power required to maintain the plate in motion. Take $\mathrm{Cd}=0.18, \mathrm{CL}=0.70$

(b) Find the width and depth of a rectangular channel to convey a discharge of 1.5
$\mathrm{m} 3 / \mathrm{s}$ at a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. Take Chezy's constant equal to 60 and the channel
bed slope equal to 0.00012 .
Q. 3 (a) Explain the terms (i) sub-critical flow, (ii) critical depth and (iii) specific energy. 07
(b) Explain the displacement and momentum thickness. 07
Q. 4 (a) What are the different methods of prevention of separation of boundary layer? 07
(b) A pipe of diameter 2 m is transporting oil of specific gravity 0.85 and dynamic 07 viscosity 0.04 poise at a rate of 4 cumecs. Model tests were conducted on a 10 cm diameter pipe using water at $20^{\circ} \mathrm{C}$. Compute the velocity and discharge in the model. Viscosity of water at $200 \mathrm{C}=0.01$ poise.

Q. 4 (a) State the procedure for locating hydraulic jump below a sluice in a mild sloped
channel.

(b) Differentiate between : (a) Impulse and Reaction turbines (b) Radial flow
and Axial flow turbines (c) Kaplan and Propeller turbines.
Q. 5 (a) (i) Develop the expression for average shear stress for a steady uniform flow in 07
open channel in terms of hydraulic radius and channel bottom slope (ii) Give the
significance of hydraulic radius and hydraulic mean depth.

$=11000 \mathrm{kw}$, Head $=365$ metres, Speed $=750$ r.p.m. , Overall efficiency $=86 \%$
Jet diameter $=1 / 6$ of the wheel diameter. Determine (i) The wheel diameter (ii)
The no of jets required and (iii) Diameter of the jet. Take Kv1=0.985 and Ku1 $=0.45$.

Q. 5 (a) Explain the components of a centrifugal pump. What do you understand by 07 manometric head?

(b) Explain the Buckingham π theorem for dimensional analysis.

