www.FirstRanker.com

Enrowww.FirstRanker.com

Date: 30/11/2018

Total Marks: 70

03

07

07

07

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (OLD) EXAMINATION - WINTER 2018

irstRanker.com

ker's choice

Subject Code:160704

Subject Name: Theory of Computation

Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) (1) State the properties of Equivalence Relations.
 - (2) State the strong principle of mathematical induction and show how will 04 you give proof by induction?
 - (b) (1) Prove that the statements: $(p \lor q) \rightarrow r$ and $(p \rightarrow r) \lor (q \rightarrow r)$ are logically 03 equivalent. 04
 - (2) What is the regular expression of following FA?

0.2 (a) Convert following NFA- Λ to NFA, draw the NFA. {E} ϵ A.

		0	
q	$\partial(q, \Lambda)$	$\partial(\mathbf{q},0)$	∂ (q,1)
Α	{B,D}	• {A}	Ø
В	Ø	{C}	{E}
С	Ø	Ø	{B}
D	Ø	{E}	{D}
Е	Ø	Ø	Ø

(b) Draw NFA – Λ for ((0 + 1)*10 + (00)*(11)*)*Show step by step construction.

OR

(b) State part-1	and part-2 of Kleens theorem and show the proof.	07
---------------------------	--	----

- **Q.3** (a) L1 and L2 are two languages:
 - $L1 = \{x \mid 11 \text{ is not a substring of } x\}$
 - $L2 = \{x \mid x \text{ starts with } 0 \text{ and ends with } 0\}$

Draw FA for both L1 and L2 and construct FA for L3 = L2 - L1

www.FirstRanker.com

07

07

(b) An NFA with states 1-5 and input alphabet {a, b} has the following transition 07 table.

tuoite.				
q	$\partial(q,a)$	$\partial(q,b)$		
1	{1,2}	{1}		
2	{3}	{3}		
3	{4}	{4}		
4	{5}	Ø		
5	Ø	{5}		

Q.1 Draw its transition diagram *Q.2 Calculate* $\partial^*(1,a)$ *Q.3 Calculate* ∂^* (1,aaabaab)

(a) Convert this NFA to FA Q.3

- (b) A language L $\{a, b\}^*$ is defined as follows:
 - 1. a ∈ L
 - 2. For any $x \in L$, $ax \in L$
 - 3. For any x and y in L, all the strings bxy, xby and xyb are in L
 - 4. No other strings are in L.

Prove that every element of L has more a's than b's.

Q.4	(a)	Define PDA and give PDA to accept strings of palindrome. Show trace on the		07
		string baab		
	(b)	Write a short note on parsing.		07

- Write a short note on parsing. (b)
- OR
- Define deterministic pushdown automata. Construct an example of DPDA that **Q.4** 07 (a) accepts strings with more a's than b's (b) (1) Give recursive definition for Language Pal of palindromes. 03 Give CFG equivalent to regular expression $(011 + 1)^* (01)^*$ 04 (2)Define Turing Machine and draw a TM to accept $\{a,b\}^* \{aba\} \{a,b\}^*$ 0.5 07
 - (a) (b) Write a short note on Universal Turing Machines. 07

OR

Q.5 (a) Write a note on models of computation and The Church Turing Thesis. 07 (b) What is the difference between accepting a language and recognizing a language? 07 Write short note on recursively enumerable languages.

www.FirstRanker.com