GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-VI (OLD) EXAMINATION - WINTER 2018

Subject Code:160704
Date: 30/11/2018
Subject Name: Theory of Computation
Time: 02:30 PM TO 05:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) (1) State the properties of Equivalence Relations.
(2) State the strong principle of mathematical induction and show how will $\mathbf{0 4}$ you give proof by induction?
(b) (1) Prove that the statements: $(\mathrm{p} v \mathrm{q}) \rightarrow \mathrm{r}$ and $(\mathrm{p} \rightarrow \mathrm{r}) \vee(\mathrm{q} \rightarrow \mathrm{r})$ are logically equivalent.
(2) What is the regular expression of following FA?

Q. 2 (a) Convert following NFA- Λ to NFA, draw the NFA. $\{\mathrm{E}\} \in \mathrm{A}$.

q	$\partial(\mathrm{q}, \Lambda)$	$\partial(\mathrm{q}, 0)$	$\partial(\mathrm{q}, 1)$
A	$\{\mathrm{B}, \mathrm{D}\}$	$\{\mathrm{A}\}$	\varnothing
B	\varnothing	$\{\mathrm{C}\}$	$\{\mathrm{E}\}$
C	\varnothing	\varnothing	$\{\mathrm{B}\}$
D	\varnothing	$\{\mathrm{E}\}$	$\{\mathrm{D}\}$
E	\varnothing	\varnothing	\varnothing

(b) Draw NFA $-\Lambda$ for $\left((0+1)^{*} 10+(00)^{*}(11)^{*}\right)^{*}$

Show step by step construction.

OR

(b) State part-1 and part-2 of Kleens theorem and show the proof.
Q. 3 (a) L1 and L2 are two languages:
$\mathrm{L} 1=\{\mathrm{x} \mid 11$ is not a substring of x$\}$
L2 $=\{x \mid x$ starts with 0 and ends with 0$\}$
Draw FA for both L1 and L2 and construct FA for L3 = L2 - L1
(b) An NFA with states 1-5 and input alphabet $\{\mathrm{a}, \mathrm{b}\}$ has the following transition table.

q	$\partial(q, a)$	$\partial(q, b)$
1	$\{1,2\}$	$\{1\}$
2	$\{3\}$	$\{3\}$
3	$\{4\}$	$\{4\}$
4	$\{5\}$	\emptyset
5	\emptyset	$\{5\}$

Q. 1 Draw its transition diagram
Q. 2 Calculate $\partial^{*}(1, a)$
Q. 3 Calculate 2* * (1,aaabaab)

OR

Q. 3 (a) Convert this NFA to FA

(b) A language $\mathrm{L}\{\mathrm{a}, \mathrm{b}\}^{*}$ is defined as follows:

1. $\mathrm{a} \in \mathrm{L}$
2. For any $x \in L$, ax $\in L$
3. For any x and y in L, all the strings bxy, $x b y$ and $x y b$ are in L
4. No other strings are in L.

Prove that every element of L has more a's than b's.
Q. 4 (a) Define PDA and give PDA to accept strings of palindrome. Show trace on the 07
string baab
(b) Write
(b) Write a short note on parsing.

OR

Q. 4 (a) Define deterministic pushdown automata. Construct an example of DPDA that 07 accepts strings with more a's than b's
(b) (1) Give recursive definition for Language Pal of palindromes. $\mathbf{0 3}$
(2) Give CFG equivalent to regular expression $(011+1)^{*}(01)^{*}$
Q. 5 (a) Define Turing Machine and draw a TM to accept $\{a, b\}^{*}\{a b a\}\{a, b\}^{*} 07$
(b) Write a short note on Universal Turing Machines.

OR

Q. 5 (a) Write a note on models of computation and The Church Turing Thesis. 07
(b) What is the difference between accepting a language and recognizing a language?

Write short note on recursively enumerable languages.

