FirstRanker.com

www.FirstRanker.com

Seat No.:		Enrolment No.	
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–VI (OLD) EXAMINATION – WINTER 2018	
Subj	ect (Code:161901 Date: 07/12/2018	
Subject Name: Dynamics Of Machinery			
Time: 02:30 PM TO 05:00 PM Total Marks			
Instru	ction	s:	
	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	э.	rigures to the right mulcate run marks.	
Q-1	А	Define Static and Dynamic balancing with suitable example.	7
	В	Explain Vibration isolation and transmissibility	7
Q-2	А	Write down short note on Variation of Tractive Force, Swaying couple and	7
	п	Hammer Blow.	7
	В	Explain concept of Direct and Reverse Crank.	/
	в	Four masses m1 m2 m3 and m4 are 200 kg 300 kg 240 kg and 260 kg	7
	D	respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and	,
		0.3 m respectively and the angles between successive masses are 45°, 75° and	
		135°. Find the position and magnitude of the balance mass required, if its radius	
Q-3		of rotation is 0.2 m.	
	Α	Discuss different cases showing the characteristics of the system performance for	7
	D	a damped free vibration.	7
	D	several loads	/
		OR	
Q-3	А	Explain Hozer's method to determine natural frequencies of multi-rotor system.	7
	В	What are various frequency measuring instruments? Explain any one in detail.	7
Q-4	А	Define logarithmic decrement and derive an expression for it.	7
	В	A, B, C and D are four masses carried by a rotating shaft at radii 100, 125, 200	7
		and 150 mm respectively. The planes in which the masses revolve are spaced 600	
		the required mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively. Find	
		the shaft shall be in complete balance.	
		OR	
Q-4	Α	Explain an analytical method of balancing of several masses rotating in	7
		different planes.	
-	В	Derive an expression for torsionally equivalent shaft system	7
Q-5	Α	Explain the method to determine the critical speed of shaft carrying single rotor,	7
	п	considering damping.	7
	D	Explain with near sketch why reciprocating masses are partially balanced?	/

www.FirstRanker.com

7

7

OR

- Q-5 A Define and only write the equation of the following terms;
 I) Natural Frequency, II) Logarithmic Decrement, III) Natural Frequency Of Damped Vibration, IV) Damping Factor, V) Dynamic Magnifier, VI) Displacement Transmissibility.
 - B A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass 100 kg at its free end. The Young's modulus for the shaft material is 200 GN/m². Determine the Frequency of longitudinal and transverse vibrations of the shaft.

www.firstRanker.com