www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (OLD) EXAMINATION - WINTER 2018

Subject Code:161906

Subject Name: Heat And Mass Transfer

Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 0.1 (a) Derive the expression for heat conduction through composite wall using 07 electrical analogy. 07
 - Find the shape factor F_{1-1} , F_{1-2} and F_{2-1} for the following geometries. **(b)**
 - (a) A black body inside a black enclosure
 - (b) A tube whose section is equilateral triangle
 - (c) Radiation exchange between a hemisphere and a plane surface.
- Q.2 **(a)** 0.5 cm thick glass (k=0.78W/m. K) is exposed to air at 25° C (inner side) with 07 convection heat transfer coefficient of 15 W/m² K. The outside air is at -15°C with convection coefficient of 50 W/m^2 K. Determine (1) temperatures at inner and outer glass surfaces (2) heat transfer rate.
 - (b) What is critical radius of insulation? Derive the expression for condition for 07 minimum resistance for maximum heat flow rate for solid cylinder under one dimensional steady state heat conduction.

OR

- (b) A circular shaft (k = 50 W/m K) 60 mm diameter having 60° C rise in 07 temperature due to friction. The heat transfer coefficient is 6.5 W/m² K. Determine (1) the expression for temperature distribution (2) the amount of heat dissipated through the shaft. Assume the shaft is a rod of infinite length.
- A polished metal pipe 5 cm outside diameter and 370 K temperature at the outer Q.3 07 **(a)** surface is exposed to ambient conditions at 295 K temperature. The emissivity of the surface is 0.2 and the convection coefficient of heat transfer is 11.35 W/m^2 -deg. Calculate the heat transfer by radiation and natural convection per meter length of pipe. Take thermal radiation constant $\sigma_b = 5.67 \text{ x } 10^{-8} \text{ W/m}^2 \text{ K}^4$. What would be the overall coefficient of heat transfer by combined mode of convection and radiation?
- (b) Derive an expression for LMTD for counterflow heat exchanger. 07 OR (a) A heat treated steel plate measures 3 m x 1 m and is initially at 30° C. it is Q.3 07 cooled by blowing air parallel to 1 edge at 9 kmph. If the air is at 10°C,
 - calculate the convective heat transfer from both sides of the plate. Take the correlation Nu= $0.664 (Re)^{0.5} (Pr)^{0.33}$ 07
 - (b) Derive the expression for effectiveness of parallel flow heat exchanger.

Total Marks: 70

Date: 13/12/2018

FirstRanker.com

Q.4	(a)	State and explain Wien's displacement law and define Lambert's cosine law of radiation	07
	(b)	Discuss the concept of thermal boundary layer in case of flow over the plates. How it differs from velocity boundary?	07
		OR	
Q.4	(a)	What is meant by a lumped capacity? What are the physical dimensions necessary for a lumped unsteady state analysis to apply?	07
	(b)	State and explain Fick's law of diffusion and compare it with Fourier's law of heat conduction	07
Q.5	(a)	A steam condenser is transferring 250 kW of thermal energy at a condensing temperature of 65°C. The cooling water enters the condenser at 20°C with a flow rate of 7500kg/hr. calculate the log mean temperature difference. If the overall heat transfer coefficient for the condenser surface is 1250 W/ m ² -deg, what surface area is required to handle this load?	07
	(b)	By dimensional analysis show that for forced convection heat transfer the Nusselt number can be expressed as a function of Prandtl number and Reynolds number.	07
0.5	(a)	UK	07
Q.5	(a)	lubricating oil of a large industrial gas turbine engine. The oil flows through the	U/

- lubricating oil of a large industrial gas turbine engine. The oil flows through the tube at 0.19 kg/s (Cp = 2.18 kJ/kg K), and the coolant water flows in the annulus in the opposite direction at a rate of 0.15 kg/s (Cp = 4.18 kJ/kg K). The oil enters the coolant at 425K and leaves at 345 K while the coolant enters at 285 K. How long must the tube be made to perform this duty if the heat transfer coefficient from oil to tube surface is 2250 W/m² K and form tube surface to water is 5650W/m²? The tube has a mean diameter of 12.5 mm and its wall presents negligible resistance to heat transfer
 - (b) Define pool boiling. Draw pool boiling curve for water and explain various 07 regimes of the curve.