

www.FirstRanker.com

Enrolwew.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018

Subject Code: 2170107 Date		: 26/11/2018		
Subject	Nam	e: Mechanics of Composite Materials		
Time: 10:30 AM TO 01:00 PM Total			Marks: 70	
Instruction	ns: Atto	mpt all questions		
1.	Mak	e suitable assumptions wherever necessary.		
3.	Figu	res to the right indicate full marks.		
			MARKS	
01	(a)	What is composite material? List the types of rainforcement	03	
Ų.1	(a)	used in a composite	03	
	(b)	Explain the mechanical behavior of composites.	04	
	(c)	Differentiate between Micromechanics and Macromechanics.	07	
		Also mention the assumptions made in typical		
		Micromechanical analysis.		
Q.2	(a) (b)	Explain the use of composite materials in Aircraft industry	03	
	(D)	Define Poisson's ratio and derive the rule of mixtures for	04	
	(c)	Using strength of material approach to derive the relation for	07	
	(C)	transverse modulus of a unidirectional composite. Also write	07	
		Halphin-Tsai relations for evaluation of transverse modulus		
		OR		
	(c)	Explain in detail Symmetric laminates	07	
Q.3	(a)	Differentiate between Lamina and Laminate with neat sketches	03	
	(b)	Derive an expression for density of a unidirectional composite	04	
	(0)	Explain in detail Anti Symmetric laminates	07	
	(0)		07	
Q.3	(a)	Explain the purpose of prepegs and fillers in composite	03	
	()	materials		
	(b)	Give classification of laminate configuration	04	
	(c)	Find the minor and major Poisson's ratio of a Glass/Epoxy	07	
		lamina with a 70 percent fibre volume fraction. Use $v_{12f} = 0.2$		
		$v_m = 0.3 E_f = 85GPa$ and $E_m = 3.4 GPa$		
Q.4	(a)	Write the disadvantages of composite material.	03	
	(b)	Determine the reduced Stiffness matrix [Q] for an orthotropic	04	
		lamina with the following material properties. $E_1 = 150$ GPa,		
		$E_2 = 20$ GPa, $G_{12} = 5$ GPa and $v_{12} = 0.3$		
	(c)	The longitudinal modulus of a Glass Reinforced Plastic (GRP)	07	
		lamina is to be doubled by substituting some of the glass fibres		
		with carbon fibres. The total fibre volume remains unchanged		
		at 0.5. Calculate the fraction of carbon fibres.		
		Use E_{carbon} = 300 GPa, E_g = /0 GPa and E_m = 5 Gpa		
		UN		

Q.4 (a) Discuss the role of fibres and matrix in composite material 03

1

- i. $[0|90_2|0|90]$ ii. [-45|45|-45|45]
- 1. [-43|43|-4
- iii. [0|90]s iv. [-45|0|45|90]s
- (c) Derive the stress-strain relationship for a specially orthotropic 07 composite material.

Q.5 (a) Sketch the variation of stress and strain in a laminate 03

- (b) Calculate the longitudinal modulus and tensile strength of a unidirectional composite containing 60 percent by volume fraction of carbon fibres. Use $E_{1f} = 3.6$ GPa and $\sigma_{mu} = 105$ MPa. Compare these values with experimentally determined values of $E_1 = 162$ GPa and $\sigma_{mu} = 2.94$ GPa. What fraction of the load is carried by the fibres in the composite?
- (c) Stating the necessary assumptions made in laminate theory, 07 derive the strain displacement relation for a laminate.

OR

- Q.5 (a) List the four elastic moduli of unidirectional lamina. Also list 03 the different methods used to determine them.
 - (b) Derive the relation for inplane shear modulus using the 04 strength of material approach.
 - (c) Calculate the matrices [A] and [B] for a cross-ply laminate [0|90] with the following lamina properties. $E_1 = 140$ GPa , $E_{2}= 10$ GPa, $E_{6} = 5$ GPa $v_{12} = 0.3$. Use ply thickness, d = 0.125mm

