FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Seat	No.:	Enrolment No GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-III (New) EXAMINATION – WINTER 2018	
Sub	ject	Code: 2133606 Date:12/12/2	2018
	-	Name: Material & Energy Balance Calculations	
		0:30 AM TO 01:00 PM Total Mark	ks: 70
Instr		ns: Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	Mar
Q.1	(a)	Define the quantities with SI units: i) Force ii) Pressure iii) Work.	03
X	(b)	A force of 20 kgf is applied on a piston of diameter 5 cm. Find the pressure exerted on a piston in KPa.	04
	(c)	A chemist is interested in preparing 500 ml of 1 normal, 1 molar and 1 molal solution of H_2SO_4 . Assuming the density of H_2SO_4 solution to be 1.075 g/cm ³ , calculate the quantities of H_2SO_4 to be taken to prepare these solutions.	07
Q.2	(a)	Define the laws with their equations:	03
		i) Ideal Gas Law ii) Raoult's Law iii) Henry's Law	
	(b)	A certain quantity of a gas contained in a closed vessel of volume 1 m^3 at a temperature of 298 K (25 ^o C) and pressure of 131.7 KPa is to be heated such that the pressure should not exceed 303.98 KPa. Calculate the temperature of gas attained.	04
	(c)	Derive: Pressure%=Mole%=Volume% OR	0′
	(c)	A weight of 1.10 kg of Carbon dioxide occupies a volume of 0.033 m ³ at 300 K. Using the Van der Waals equation of state, calculate the pressure. Data: For CO ₂ gas, take $a = 3.60 [(m^3)^2 \cdot kPa] / (kmol)^2$ and $b = 4.3 \times 10^{-2} m^3 / kmol$.	01
Q.3	(a)	Derive: $\rho_{mix} = (PM_{avg}) / RT$	03
	(b)	A gas mixture contains 0.274 kmol of HCl, 0.337 kmol of N_2 and 0.089 kmol of O_2 . Calculate: (a) Average molecular weight of gas.	04
	(c)	A solution containing 55% benzene, 28% toluene and 17% xylene by weight is in contact with its vapour at 373 K. Calculate the total pressure and molar composition of the liquid & vapour. Data: Vapour Press. Data at 373 K: Benzene: 178.60KPa, Toluene: 74.60KPa, Xylene: 28KPa. OR	0,
Q.3	(a)	Define the terms: (a) % Conversion (b) % Yield (c) % Excess	03
	(b)	In the production of sulphur trioxide, 100 kmol of SO ₂ , 200 kmol O ₂ are fed to reactor. The product stream is found to contain 80 kmol SO ₃ . Find the % conversion of SO ₂ .	04
	(c)	$SO_2 + 1/2O_2 = SO_3$ In the manufacture of acetic acid by oxidation of acetaldehyde, 100 kmol of acetaldehyde is fed to the reactor per hour. The product leaving the reactor contains 14.81% acetaldehyde, 59.26% acetic acid, and the rest oxygen (on mole basis). Find the percentage conversion of acetaldehyde. $CH_3CHO + 1/2O_2 = CH_3COOH$	01
Q.4	(a)	Define the following terms: i) Limiting Reactant ii) Excess Reactant iii) Stoichiometric Ratio	03

www.FirstRanker.com

	(b)	Calculate the following for the reaction:	04
		$C_2H_4 + 2Cl_2 \rightarrow C_2HCl_3 + H_2 + HCl_3$	
		(i) The stoichiometric ratio of Cl_2 to C_2H_4	
		(ii) If 4 kmol Cl_2 is used per kmol of C_2H_4 , find the % excess Cl_2 .	
	(c)	A coke is known to contain 90% carbon and 10% non-combustible	07
		ash(by weight):	
		$C + O_2 = CO_2$	
		i) Find the moles of oxygen theoretically required to burn 100 kg of	
		coke completely.	
		ii) If 50% excess air is supplied, find the analysis of the gases at the end	
		of the combustion?	
		OR	
Q.4	(a)	Define the following terms:	03
		i) Law of Conservation of Mass ii)Heat Capacity iii) recycling	

- (b) Explain the following unit operations with their block diagram and 04 material balances: i) Distillation ii) Evaporation.
- (c) Fresh juice contains 15% solids and 85% water by weight and is to be concentrated to contain 40% solids by weight.
 In a single stage evaporation system, it is found that volatile constituents of juice escape with water leaving the concentrated juice with a flat taste. In order to overcome this problem, part of the fresh juice bypasses the

evaporator. The operation is shown schematically: <u>15% Solids</u> Fresh Juice <u>15% Solids</u> <u>15% Solids</u>

Calculate:

Data:

FirstRanker.com

i) The fraction of juice that bypasses the evaporator.

Bypass Juice

ii) The concentrated juice produced (containing 40% solids) per 100 kg of fresh juice fed to the process.

- Q.5 (a) Explain standard heat of reaction and standard heat of combustion.
 - (b) Explain the significance of bypass operation with neat flow diagram.
 - (c) Soyabean seeds are extracted with the hexane in batch extractors. The flaked seeds are found to contain 18.6% oil, 69% solids, 12.4% moisture (by weight). At the end of the extraction process, cake is separated from hexane-oil mixture. The cake is analyzed to contain 0.8% oil, 87.7% solids and 11.5% moisture (by weight). Find the percent recovery of oil.

OR

- Q.5 (a) Define: i) Dry-bulb temperature ii) Wet-bulb temperature.
 - (b) Chlorinated diphenyl is heated from 313 K (40^oC) to 533 K (260^oC) in an indirectly fired heater at the rate of 4000 kg/h. Calculate the heat required to be added to the fluid in the heater. The heat capacity of the fluid in this temperature range is given by the equation: $C = 0.7511+1.465 \times 10^{-3}$ T, kJ/(kg.K) where T is in K.
 - (c) Calculate the change in enthalpy between reactants and products if both are at 298 K (25°C) and if 5 mole of ethylene oxide is produced as per the following reaction:

Component	ΔH ⁰ _f , kJ/mol at 298.15 K(250C)
C2H4(g)	52.50
C2H4O(g)	-52.63

$C_2H_{4(g)} + 1/2 O_{2(g)} = C$

03

04

03