RF	Seat 1	tRanker.com Enrolment No	
F	irstra	anker's choice www. FirstBanker.com www. FirstBanker.com	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2018	
	Subi	ect Code: 2170403 Date: 19/11/2018	
	Subj Subi	act Nama: Bianracass Plant Design	
	Subj T:	Total Marka, 70	
	1 IIII Instru	2: 10:30 AM TO 01:00 PM TOtal Warks: /0	
	Instru	CHORS: 1 Attempt all questions	
		 Attempt an questions. Make suitable assumptions wherever necessary. 	
		3. Figures to the right indicate full marks.	
		4. Notations used, have conventional meaning.	
		5. Assume suitable data wherever necessary.	
Q.1	(a)	What is Capacity and Economy of an evaporator?	03
	(b)	Define the term: stress, resilience, hardness, stiffness.	04
	(c)	Write a note on corrosion allowance & weld joint efficiency factor (j).	07
Q.2	(a)	Explain in brief: Design Temperature & Design Pressure	03
	(b)	Write a short note on: Process Flow Diagram.	04
	(c)	Discuss various types of feed arrangement used in multiple effect evaporators.	07
	()	OR	~=
01	(c)	Explain the various types of flanges used in industry with neat sketch.	U7 02
Q.3	(a) (b)	Define the term relative volatility and its importance.	U3 04
	(D) (a)	Starting with assumption & limitation, explain Ma Caba Thiala mathed	04 07
	(\mathbf{c})	Starting with assumption & minitation, explain Mc-Cabe Thiele method.	07
03	(a)	Write the function of coil in reactor with its importance	03
~	(\mathbf{u})	Explain the types of jacket in brief.	04
	(c)	Explain different types of heads used in the industry with neat sketch.	07
O.4	(a)	State the various types of agitators used in the reactor.	03
Ľ	(b)	Give classification of Nozzle stating the importance of each.	04
	(c)	Enlist various types of fabrication techniques used in industry. Explain any one in detail.	07
0.4	(a)	Discuss the term: Design stress & Poisson's ratio	03
v	(\mathbf{u})	Discuss the advantages and disadvantages of vacuum distillation in detail.	04
	(\mathbf{c})	Discuss the factors affecting the fluid allocation in Shell and Tube heat exchanger.	07
0.5	(•)	Reactor (ID = 800 mm) with hemispherical head at the bottom. Inside working pressure	14
Z		is 75 kgf/cm ² gauge & temperature is 70 °C. Reactor is covered with plain jacket such	
		that 75% length of shell & bottom hemispherical head is covered with jacket. Cooling	
		water is circulated inside the jacket by pumping with a centrifugal pump having a shut	
		off discharge pressure 6 kgf/cm ² (g). Hemispherical head is fabricated from SA-516	
		Grade 70. Maximum allowable stress at design temperature is 610 kgf/cm ² . Modulus of	
		Elasticity of plate material (E) = 193×10^3 N/mm ² . Poisson's ratio (μ) = 0.3, ρ = 7.83	
		g/cm ³ , Joint efficiency (j) = 0.85. Find thickness of the head and weight of the fabricated	
		hemispherical head.	

$$t_{h}' = \left(\frac{PD_{i}}{(4fJ - P)}\right) + CA , t_{h}' = 4.4r \sqrt{\frac{P}{2E}} (3(1 - \mu^{2}))^{\frac{1}{2}} + CA$$

OR

Q.5 A single effect evaporator is to be designed to concentrate 9000 kg/hr of a solution from 14 12% to 20% solids. Feed enters at 25 °C. Saturated steam at 110 °C (latent heat = 540 kcal/kg) is available. The condensate leaves at the condensing temperature. Saturation temperature of vapor to the condenser is 400C ($\lambda = 580$ kcal/kg). Specific heat of all solutions may be taken as 1 kcal/kg°C. Boiling point rise is 5°C. The evaporator has an overall heat transfer coefficient of 1900 kcal/hr.m².°C. Calculate: i) evaporator capacity, ii) evaporator economy, iii) The area of heating surface required. Use 1 kcal = 4186 J.