GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018

Subject Code: 2170502
Date: 19/11/2018
Subject Name: Process Equipment Design -II
Time: 10:30 AM TO 01:30 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 2 (a) Discuss the tubesheet design. 03
(b) Define the following properties of materials:

Toughness, Hardness, Fatigue, Creep.
(c) Calculate the shell thickness based on resultant stress theory for vessel having07 inside diameter 3 m , subjected to internal operating pressure of 7.7 atm g and $400^{\circ} \mathrm{C}$ temperature. The weight of vessel is 5520 kg . Maximum wind load applicable to vessel and torque due to offset of piping are 9000 N.m and 625 N.m respectively. The material of construction is CS grade 70 [UTS: 418 $\mathrm{N} / \mathrm{mm}^{2}$, $\mathrm{FOS}=3$] with modulus of elasticity $185 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$, Poisson's ratio 0.32 and corrosion Allowance $=2 \mathrm{~mm}$.

OR

(c) Discuss the design of structurally supported roof for cylindrical storage vessel.
Q. 3 (a) Determine the thickness of shell of distillation column at various heights based on following data.

Shell O.D. at top $=2000 \mathrm{~mm}$
Length of Shell $=27 \mathrm{~m}$
Internal design pressure $=3 \mathrm{kgf} / \mathrm{cm}^{2}$
Design temperature $=120^{\circ} \mathrm{C}$
Shell Material = SA-283 Grade C
Type of shell plate joint = Double welded butt joint with 10% radiography

Tray spacing $=0.3 \mathrm{~m}$
Top disengaging space $=1.2 \mathrm{~m}$
Weight of head $=317 \mathrm{~kg}$
Weight of one tray plus wt. of liquid over the same $=120 \mathrm{~kg} / \mathrm{m}^{2}$
Wt. of attachments (pipes, ladders \& platforms) $=150 \mathrm{~kg} / \mathrm{m}$
Wind pressure $=130 \mathrm{kgf} / \mathrm{m}^{2}$
Insulation thickness $=100 \mathrm{~mm}$
Density of insulation $=500 \mathrm{~kg} / \mathrm{m}^{3}$
Maximum allowable stress of shell material at $120^{\circ} \mathrm{C}=890 \mathrm{kgf} / \mathrm{cm}^{2}$
Modulus of elasticity $=2 \times 10^{6} \mathrm{kgf} / \mathrm{cm}^{2}$
Poisson's ration $=0.3$
Corrosion allowance $=2 \mathrm{~mm}$
Specific gravity of SA-283 Grade C $=7.865$
Neglect the stress created by eccentric load and seismic load.

OR

Q. 3 (a) Derive the equation for longitudinal and axial stresses generated due to 03 operating pressure in cylindrical vessel.
(b) Discuss various types of jackets with neat sketch.
(c) Discuss the design of Tray and tray support in detail.
Q. 4 (a) Discuss the calculation of tube side pressure drop for shell and tube heat 03 exchanger.
(b) Discuss the design of half coil and plain jacket.
(c) Design a bracket of the support welded on outside surface of the shell, to support a vertical cylindrical reaction vessel based on following available details:

OD of reactor shell $=1.3 \mathrm{~m}$
Thickness of the shell $=12 \mathrm{~mm}$
Height of the vessel $=2.5 \mathrm{~m}$
Clearance from vessel bottom to foundation $=1 \mathrm{~m}$
Weight of vessel with contents $=3750 \mathrm{~kg}$
Wind pressure $=130 \mathrm{kgf} / \mathrm{m}^{2}$
Diameter of bolt circle $=1.5 \mathrm{Nm}$
Size of base plate for bracket $=150 \mathrm{~mm} \times 150 \mathrm{~mm}$
Height of the C channel from foundation $=2.625 \mathrm{~m}$
Size of C channel $=150 \mathrm{~mm} \times 75 \mathrm{~mm}$
Area of cross section $=22 \mathrm{~cm}^{2}$
Modulus of section $=24.6 \mathrm{~cm}^{3}$
Radius of gyration $=2.43 \mathrm{~cm}$
MOC for support = IS 800
Max. allowable tensile stress $=1400 \mathrm{kgf} / \mathrm{cm}^{2}$
Max. allowable compressive stress $=1233 \mathrm{kgf} / \mathrm{cm}^{2}$
Max. allowable bending stress $=1575 \mathrm{kgf} / \mathrm{cm}^{2}$
OR
Q. 4 (a) Discuss the calculation of shell side pressure drop for shell and tube heat exchanger.
(b) A flat blade turbine agitator with six blades is installed centrally in vertical tank. The tank is 1.5 m in diameter, turbine is 0.5 m in diameter. Based on the given following data, Suggest Rated power required for motor to run agitator.

Height of liquid in tank $=1.5 \mathrm{~m}$
Viscosity of liquid $=20 \mathrm{cp}$
Density of liquid $=1200 \mathrm{~kg} / \mathrm{m}^{3}$
Speed of agitator $=120 \mathrm{rpm}$
Length of agitator shaft between bearing and agitator $=2 \mathrm{~m}$
For $\mathrm{N}_{\mathrm{Re}}>10000 \mathrm{~N}_{\mathrm{p}}=6$ and $\mathrm{N}_{\mathrm{Re}}<10000 \mathrm{~N}_{\mathrm{p}}=5$
(c) Discuss the design of skirt support for tall vertical vessel.
 for the flange connecting head and shell
(a) Gasket 03
(b) Bolts 04
(c) Flange diameter and thickness. 07

OR
Q. 5 (a) Discuss the selection criteria for nozzles. 03
(b) Classify the flanges based on its facings and give application for each. $\mathbf{0 4}$
(c) Examine the data given below to evaluate the requirement of compensation $\mathbf{0 7}$ for the nozzle opening in a cylindrical shell. If compensation ring (Reinforcement pad) is required then find its dimensions and weight.

Outside diameter of shell $=2 \mathrm{~m}$
Max. Working pressure within shell $=3.5 \mathrm{MN} / \mathrm{m}^{2}$
Wall thickness for the shell $=0.05 \mathrm{~m}$
Corrosion allowance $=3 \mathrm{~mm}$
Joint efficiency $=1$ (for shell and nozzle)
MOC of shell, nozzle and reinforcement pad = IS 2002
Density of IS $2002=7800 \mathrm{~kg} / \mathrm{m}^{3}$
Allowable stress of IS $2002=96 \mathrm{MN} / \mathrm{m}^{2}$
OD of nozzle (seamless) $=0.25 \mathrm{~m}$
Nozzle wall thickness $=0.016 \mathrm{~m}$
Length of nozzle $=100 \mathrm{~mm}$

