

www.FirstRanker.com

Enrolment.FirstRanker.com

CITADAT TECHNOLOCICAL UNIVEDSITY

		GUJANA BF - SEMEST	T IECHINU FR_VII (NFW)	FXAMINATI	ON _ WINTER 2018			
Sub	iect (Code: 217050	EK-VII (INEVV) 7		Date: 03	/12/2018		
Sub	ject v	Nome: Comp	, uton Aidod Du	ooog Syntho	Date: 03/	12/2010		
Sub T:		Name: Comp		ocess synthe	SIS Tatal Ma			
Tim	e: 10	:30 AM TO 01:0	00 PM		I otal Ma	rks: /0		
Instr	uction 1	1S: Attompt all guas	tions					
	2	Attempt an questions. Make suitable assumptions wherever necessary						
	3.	Figures to the ris	ght indicate full n	narks.				
		8				MARKS		
01	(a)	Calculate the i	number of possib	le sequences for	separation by ordinary	03		
V .1	(u)	distillation for 7. 8 and 10 number of products						
	(b)	Explain the ethical role of engineer in design of process.						
	(c)	Determine the minimum utility target for following stream data ·						
	(-)	Take ΔT min=	=10 °C	0	6			
		stream	Tin (K)	Tout (K)	mCp (KW/K)			
		H1	650	370	10			
		H2	590	370	20			
		C1	410	650	15			
		C2	353	500	13			
Q.2	(a)	 Define : Minimum approach temperature, Threshold approach temperature, Optimum approach temperature. Explain the generalized rules for stream splitting on both sides of the pinch to satisfy MER requirements. 						
C								
	(b)							
	(c)	Explain the step wise procedure for construction of attainable region.						
	(a)	UK CK						
	(C)	(c) Derive the equation to construct attainable region for steam reforming of methane. Consider following reactions dominate in process. $CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2$, $CH_4 + H_2O \leftrightarrow CO + 3H_2$.						
		$CO + H_2O \leftrightarrow$	$CO_2 + H_2$		2,			
Q.3	(a)) Compare flowshop plant and jobshop plant.						
C	(b)	Describe any four environmental factors to be considered in process						
		design.						
	(c)	Define overlapping and non overlapping operation and show by any						
		suitable example that overlapping operation is more efficient.						
				OD				
03	(n)	Compara vari	oue transfer polic	UK		03		
Q.3	(a)	Draw the algorithm of Detailed Process Synthesis-Algorithmic						
	(0)	Methods						
	(c)	Calculate the cycle time using following processing time data for ZW						
	(-)	NIS and UIS:	,		<i>6 2 m m 1 0 2 m m</i>			
		product	Stage 1	Stage 2	Stage 3			
		À	6	4	3			
		В	3	2	2			
Q.4	(a)	Explain node	and saddle point	in residue curve	e map.	03		

(a)

Q.4

Firstrant provide the second pr

stream	Tin °C	Tout °C	mCp (KW/°C)	
H1	180	60	3	
H2	150	30	1	
C1	30	135	2	
C2	80	140	5	

(c) Explain the positioning of heat pump with reference to pinch temperature.

Derive the equation for construction of residue curve.

07

ſ	λ.	D	
ι	J.	ĸ	

- 03 04
- (b) Design heat exchanger network on cold side of pinch for following :Take ΔT min= 10°C, Hot pinch = 90 °C, Qcu= 50 KW stream Tin °C Tout °C mCp (KW/°C)

stream	Tin °C	Tout °C	mCp (KW/ºC)
H1	180	60	3
H2	150	30	1
C1	30	135	2
C2	80	140	5

- (c) Explain the heat integration in distillation column using heat pumping, vapor recompression and Reboiler flashing.
 (c) Description of the second se
- Q.5(a) Draw the superstructure for one cold stream and two hot streams.03(b) Explain GCC briefly.04
 - (c) Draw the complex and thermally coupled distillation column 07 configurations for ternary distillation.

OR

- Q.5 (a) Draw the superstructure for one hot stream and two cold streams.
 (b) Compare condensed transshipment model and expanded
 04 transshipment model.
 - (c) Draw the possible sequences for 3 number of products and explain 07 heuristics for determining favorable sequences.