GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018
Subject Code: 2170914
Date: 15/11/2018

Subject Name: Digital Signal Processing

Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

MARKS

Q. 1 (a) A discrete -time signal $\mathrm{x}(\mathrm{n})$ is given below :
$X(n)=\{1,2,1,-2,1,2,3,4,14\}$
Sketch and label carefully each of the following signals:
(i) $x(n-2)$
(ii) $x(-4-n)$ (iii) $x(n / 2)$
(b) List advantages of Digital Signal Processing over Analog Signal Processing.
(c) Find the linear convolution of following pairs of discrete sequences
(i) $\mathrm{x}_{1}(\mathrm{n})=\{1,2,3,4,12,4,6\} \quad \mathrm{h}_{1}(\mathrm{n})=\{4,3,2,1\}$
(ii) $\mathrm{x}_{1}(\mathrm{n})=\{1,2,1,2,1,2,1\} \quad \mathrm{h}_{1}(\mathrm{n})=\{1,2,3,4,3,2,1\}$
Q. 2 (a) Obtain Fourier transform of single sided exponential pulse 03 $x(n)=a^{n} u(n)$
(b) Check the following systems for time invariance and
Linearity: (i) $y(n)=n[x(n)]^{2}$
(ii) $y(n)=a[x(n)]^{2}+b x(n)$
(c) Calculate DTFT of following signals
(i) $x(n)=[1 / 4,1 / 4,1 / 4,1 / 4]$
(ii) $\mathrm{x}(\mathrm{n})=2(3 / 4)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$

OR
(c) Explain Inverse system, minimum phase system and all pass system. Determine Inverse of the system characterized by $\mathrm{y}(\mathrm{n})=0.5 \mathrm{y}(\mathrm{n}-1)+\mathrm{x}(\mathrm{n})$ assuming zero initial conditions.
Q. 3 (a) Find the Z Transform of $\left(\frac{1}{3}\right)^{n-1} \mathrm{u}(\mathrm{n}-1)$
(b) The impulse response of the LTI system is $h(n)=\{2,4,5,6\}$.

Determine the response of the system to the input signal $x(n)=\{1,1,2,3\}$
(c) Determine the inverse z -transform of the function
$\mathrm{X}(\mathrm{Z})=\frac{1}{\left(1-1.5 z^{-1}+0.5 z^{-2}\right)},|\mathrm{Z}|>1$
OR
Q. 3 (a) Find Z-transform of $x(n)=\left[2(4)^{n}-4(2)^{n}\right] u(n)$03
(b) State and prove the differentiation property of Z transform. 04
(c) Determine the response of the system,
$y(n)=\frac{5}{6} y(n-1) \quad-\frac{1}{8} y(n-2)+x(n)$ to the input signals. $x(n) \frac{1}{3} \delta(n)-\delta(n-1)$
Q. 4 (a) Define DFT.

Firstranker (b) Fhpinf the IDFT of Ww F Frst Ranker.com
(c) Explain 8-point DFT from two 4 point DFTs using radix-2

Decimation in frequency (DIF) FFT algorithm.

OR

Q. 4 (a) Find the Circular convolution of following pairs of discrete sequences
 (i) $\mathrm{x}_{1}(\mathrm{n})=\{3,2,3,4\}$
 $\mathrm{x}_{2}(\mathrm{n})=\{1,3,1,3,2,1\}$

(b) Obtain the value of $\mathrm{X}(4)$ for 8 point DFT if
$x(n)=\{1,-1,0,2,1,-2,-1,1\}$
(c) Derive DIT FFT flow graph for $\mathrm{N}=4$ hence find DFT of
$x(n)=\{1,2,3,4\}$
Q. 5 (a) Write a note on windowing.03
(b) Determine $\mathrm{H}(\mathrm{Z})$ by using impulse invariant method if $\mathrm{H}(\mathrm{s})=$ 04 $\frac{10}{s+2}$ and sampling time is 0.01 sec .
(c) Obtain Direct Form I \& II realization of a system described by
$y(n)-1 / 6 y(n-1)+1 / 3 y(n-2)=x(n)+2 x(n-2)$
OR
Q. 5 (a) Compare Decimation in Time and Decimation in Frequency. 03
(b) Explain Floating point Digital signal processors. 04
(c) With the help of a neat sketch, explain Digital Signal 07 Processor architecture.

