

Seat No.: _____

www.FirstRanker.com

www.FirstRanker.com

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2018 Subject Code: 2171306 Date: 29/11/2018															
													Subject Name: Wastewater Engineering Time: 10:30 AM TO 01:30 PM Total Marks		
1. 2. 3.	Atten Make	pt all questio suitable assu es to the right	mption				ary.								
0.1	(a)	Evplain the	impo	ortance	e of	Equal	izatio	n pro	cess	in a	waste	ewater	03		
Q.1	(a)	Explain the importance of Equalization process in a wastewater treatment plant. Explain the purpose of following unit operations/processes in a											04		
	(b)	wastewater treatment plant : (i) Screening (ii) Suspended growth biological process (iii) Primary sedimentation (iv) Nitrification													
	(c)	Differentiate	e betwe	een do	mesti	c wast	ewate	r and	indust	trial w	astew	ater.	07		
Q.2	(a)	Explain the	terms	(i) S	OR (ii) WO	R (iii)	Food	to mi	crobe	ratio		03		
Q.2	(b)	Explain the terms: (i) SOR (ii) WOR (iii) Food to microbe ratio Design an aerated grit chamber for an average flow of 8 MLD, 03 04													
	(c)	A seems govern is inclined at angle of 60° to the horizontal. There are													
	, ,	25 numbers of rectangular bars having 20mm size (facing the flow) and a clear spacing of 25mm. Determine the head loss using Kirschner equation, when the bars are clean and approach velocity is 1 m/s.													
		OR													
(a) Find out the area of secondary clarifier to be used for AS										ASP	using	07			
	following data, if the sludge has to be thickened to a concentrati										tion of				
		10,000 mg/	Ĺ ,						5	4	3	2			
		Kg/ 80	60	50	40	30	20	10	3	4					
		m3 ML													
		SS	0.2	0.44	0.78	1.7	5.3	34	62	68	76	83			
		Vel 0.17 ocit 5	0.3	0.44	0.78	1.7	3.5		02						
		у													
0.3		Enlist and e	volain	the o	peration	anal n	robler	ns of s	creen	S.			03		
Q.3		Weite a cho	rt note	on tu	he set	tlers.							04		
	(b)	Write a short note on tube settlers. Design a primary settling tank for a wastewater treatment plant having a flow rate of 0.5 m ³ /s assuming SOR value as 32.5 m ³ /m ² –day. Check													
	(-)	a flow rate	of 0.5	m^3/s	assum	ing SC)R val	lue as	32.5 1	m³/m²	-day.	Check			
		for WOR a	nd dete	ention	time.		R								
0.3	(-)	Draw a fl	w die	oram	for s	ewage	treat	ment	with	suspe	nded	growth	03		
Q.3	(a)	biological process.													
	(b)		lifferer	nt type	es of n	nixers	used i	in a w	astew	ater tre	eatme	nt plant	04		
 and explain any one. (c) Design a cylindrical flash mixing tank by determining the dimensions and required input power using following data: 													07		
												ie tank	0 /		
		dimensions Design flo	s and re	equire	$\frac{10^3}{10^3}$	m ³ /d	er usi	ng ron	iowiii;	g uata					
		Rapid mix			XIU	III /U									
		Rapid mix	G = 60	$0s^{-1}$											
		$\mu = 1.519$	5×10^{-3}	N/m	2-s										

www.FirstRanker.com

www.FirstRanker.com

0.11

0.12

0.12

0.12 8

0.11

0.10 5

0.10 4

Q.4	(a) (b) (c)	Explain the operational problem of Bulking sludge, Differentiate between diffused aeration and mechanical aeration For a flow rate of 0.05657 m^3/s and average BOD_5 concentration of 140 mg/Lin primary treated effluent , find the volume of aeration tank for a complete mix ASP for following conditions : (1) The treated effluent should have 30 mg/L BOD and 30 mg/L SS (2) Assume BOD of SS = 33 % of SS (3) Ks=100 mg/L BOD, $\mu m=2.5\ d^{-1},\ Y=0.5$,kd=0.05 d^{-1} Also calculate HRT and F/M ratio.												03 04 07	
0.4	(0)	What is Bio tower? Explain its working.												03	
Q.4	(a) (b)	With a short note on Sequencing Batch Keactor											04 07		
Design a Retating Riological Contactor to treat a flow of 50 ly											d effl	uent	07		
	primary treated wastewater having BOD ₅ of 200 mg/L. Desired effluen BOD ₅ is 30 mg/L.														
															110000000
Q.5	(a)	Prepar	e a li	st of	sludge	e dew	aterin	g dev	ices	and e	xplair	any	one a	long	07
		'the most altotale												07	
	(b) Determine the dimensions of UASB reactor for wastewater having florate of 1500m3/d. The characteristics of wastewater are as under:														
		BOD :													
		COD=450 mg/L													
		TSS=400 mg/L VSS= 270 mg/L													
		Sulphate = 85 mg/L													
		Assun	ne rec	luired	data.		roc ge	nerati	on rat	e					
		Also						OR							
Q.5	2.5 (a) Differentiate between Standard rate and high rate digester.											flow	03 04		
	(b)	Design an oil and grease trap to remove 170 mg/L of 0 d of a now												04	
	of 45000m3/d of domestic wastewater. (c) Find out the volume of equalization tank to get a constant out flow for											07			
	(c)	the hourly flow rate variations as given in table below:													
													10	11	
		Tim	0	1	2	3	4	5	6	7	8	9	10	0.13	
		Flo	0.08	0.07	0.05 25	0.04	0.03 34	0.03 18	0.03 82	0.06 53	0.11	0.13	0.13 5	7	
		m3/s Tim	12	13	14	15	16	17	18	19	20	21	22	23	
		e	12	0.10		0.11	0.10	0.10	0.10	0.11	0.12	0.12	0.12	0.11	

0.10

0.11

0.12

0.12

w m3/s