

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018

Subject Code: 2171708 Date: 19/11/2018

Subject Name: Digital Signal Processing

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** 03 (a) Determine the z transform of finite duration sequence $x(n) = \{1, 2, 3, 4, 5\}$ Write about anti-aliasing filter for DSP system. 04 **07** Explain classification of discrete time systems in detail. **Q.2** 03 (a) Decide whether system $y(n) = x(n^2)$ is linear or nonlinear. Introduce quantization and quantization errors. 04 Brief about architecture of DSP processor with necessary sketch. **07** Discuss advantages of digital over analog signal processing. 07 0.3 What are even and odd signals? Give example. 03 **(b)** 04 Compute 4 point DFT of sequence $x(n) = \{1, 0, 2, 3\}$ with matrix of twiddle system Represent the **07 (c)**
 - (c) Represent the system transfer function $H(z) = (1 \frac{3}{7}z^{-1} + \frac{7}{8}z^{-2})(1 \frac{7}{9}z^{-1} + \frac{3}{2}z^{-2})$ using direct form structure and cascade form structure.

OR

- Q.3 (a) Write any three properties of z transform.
 (b) Brief about relationship of the discrete Fourier transform to the z
 04
 - (b) Brief about relationship of the discrete Fourier transform to the z transform.
 - (c) Compute 4 point DFT of sequence $x(n) = \{2, 1, 1, 2\}$ by definition and with matrix of twiddle factor.
- Q.4 (a) Explain transposed form of structure for discrete time systems. 03
 - (b) Perform linear convolution using mathematical equation for following sequences $h(n) = \{1, 1, -1\}$ and $x(n) = \{1, -1, 2\}$
 - (c) Determine cross correlation $r_{xh}(l)$ for following sequences **07** $x(n) = \{-3, -2, 1, 4, 8, -3\}$ and $h(n) = \{1, 1, 1, -1, 2, -2\}$

OR

- Q.4 (a) Introduce various terms of specifications for FIR filter design. 03
 - (b) List windowing techniques for filter design. Explain any one window in detail.
 - (c) Perform circular convolution for following two sequences $x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$

(c)

www.FirstRanker.com

www.FirstRanker.com

Q.5 Explain term 'radix' for FFT algorithm. 03 (a) Find sequence X(k) using decimation in time FFT technique for **04** $x(n) = \{0, 1, 2, 3\}$ **07 (c)** Determine the inverse z transform of $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$ by power series expansion for ROC |z| > 1. OR With example explain signal flow diagram representations of Linear **Q.5** 03 Constant-Coefficient Difference equations. **(b) 04** Determine digital filter for analog filter $H(s) = \frac{s+a}{(s+a)^2 + b^2}$ using impulse invariance method. **07**

Find z transform and ROC of $x(n) = (-1/5)^n u(n) - (1/2)^n u(-n-1)$

www.FirstRanker.com