FirstRanker.com

www.FirstRanker.com

Enrolment. FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2018 Subject Code: 2171014			1/2010
Su		Code: 21/1914 Date: 15/1	1/2018
Subject Name: Gas Dynamics			
Time: 10:30 AM TO 01:00 PM Total Ma			ks: 70
Ins	tructio 1. 2. 3.	ons: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	4.	Use of gas tables and steam tables is permitted.	
			MARKS
Q.1	(a)	Define the following terms: (a) Stagnation temperature (c) Stagnation	03
	(h)	Explain Mach number and its significance	04
	(c) (c)	Define Gas dynamics state various laws applied in the study of gas dynamics.	07
Q.2	(a)	State assumptions made in deriving equations for Fanno flow. State two engineering fluid flow conditions which can be analyzed as Fanno flow	03
	(b)	Show Rayleigh heating and Rayleigh cooling process on <i>h</i> -s diagram.	04
	(c)	Write a short on reference velocities.	07
		OR	
	(c)	Air enters the combustion chamber at 60kPa, 350K and 75m/s. the gasses leave the combustion chamber at a mach number of 0.75. for a mass flow rate of air of 30kg/s. Find mach number and stagnation temperature at inlet, the exit stagnation temperature, the rate of heat transfer and rate of fuel burnet of C.V. of 44 MJ/kg.	07
Q.3	(a)	Discuss concept of formation of normal shock waves.	03
	(b)	State the assumptions in the analysis of Rayleigh flow and give applications of Rayleigh flow.	04
	(c)	Discuss the following terms with help of sketch (a) Mach angle (b) Zone of Silence (c) zone of action (d) Mach cone.	07
Q.3	(a)	UK Explain (a) stagnation pressure (b) stagnation temperature	03
	(a) (h)	Define fanno flow process and state its governing equations	03
	(c) (c)	Derive the expression for the pressure ratio across normal shock in terms of density ratio	07
Q.4	(a)	What is strength of shock wave? Explain.	03
	(b)	Derive following form of Prandtl-mayer equation $V_1V_2 = a^{*2}$	04
	(c)	State and explain the practical application of wind tunnel	07
0.4	(\mathbf{a})	UR Define articlate 2 Calculate the ratio of stagnation density to articla	02
Q.4	(a)	density for mono-atomic ideal gas	03
	(b)	What are various types of wind tunnels used for low and high speed testing of models?	04
	(c)	Draw the Fanno curve on h-s diagram and discuss the effect of friction in case of subsonic and supersonic flow. What is the limiting value of Mach number?	07
Q.5	(a)	Define coefficient of compressibility and bulk modulus.	03

1

FirstRanker.com continues beyond maximum enthalpy point?

> A circular duct passes 8.25 kg/s of air at an exit Mach number of 0.5. The 07 (c) entry pressure and temperature are 3.5bar and 38°C respectively and coefficient of friction is 0.005. if the Mach number at entry is 0.15, determine: (1) diameter of duct (2) length of duct (3) pressure and temperature at exit.

OR

- Derive expression for pressure ratio, temperature ratio and velocity ratio Q.5 (a) 03 for the Fanno flow of a perfect gas. 04
 - Explain the phenomenon of choking in isentropic flow. **(b)**
 - A Mach -2 aircraft engine employs a subsonic inlet diffuser of area ratio 07 (c) 3. A normal shock is formed just upstream of the diffuser inlet. The free stream conditions upstream of the diffuser are: p = 0.10 bar, T = 300 K. Determine (a) Mach number, pressure and temperature at the diffuser exit. (b) Diffuser efficiency including the shock. Assume isentropic flow in the diffuser downstream of the shock.

www.firstRanker.com