

www.FirstRanker.com

Enrolwww.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018

Subject Code: 2171916 Subject Name: Applied Mechanics of Solid Time: 10:30 AM TO 01:00 PM Date: 15/11/2018

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b)	Define state of stress at a point. Justify the statement "Principal planes are orthogonal."	03 04
	(c)	The state of stress at a point is characterized by the components	07
		$\sigma_x = 100 \ MPa \ , \sigma_y = -40 \ MPa \ , \sigma_z = 80 \ MPa \ , \tau_{xy} = \tau_{yz} = \tau_{zx} = 0$	
		Determine the extremum values of shear stresses, their associated normal stresses, octahedral shear stress and its associated normal stress.	
Q.2	(a)	Write the use of FOS in design.	03
×	(b)	List out the theories of failure and explain any one of them.	04
	(c)	Explain strain deviator and its invariants.	07
		OR	
	(c)	Derive differential equations of equilibrium.	07
Q.3	(a)	Define the state of pure shear.	03
C	(b)	Explain the plane stress and plane strain.	04
	(c)	Explain Airy stress function in polar coordinates.	07
		OR	
Q.3	(a)	Explain Circular Polariscope	03
	(b)	What do you mean by the principal of virtual work?	04
	(c)	Explain the Mohr's circle for three dimensional state of stress.	07
Q.4	(a)	Write equilibrium equations for plane stress state.	03
	(b)	Explain stress strain relation in terms of plastic flow	04
	(c)	The cubic element is subjected to the following state of stress	07
		$\sigma_x = 100 MPa$, $\sigma_y = -20 MPa$, $\sigma_z = -40 MPa$, $\tau_{xy} = \tau_{yz} = \tau_{zx} = 0$	
		Assume the material is homogenous and isotropic. Determine the	
		principal shear strains and octahedral shear strain, take $E = 2 \times 10^5$	
		MPa and $v = 0.25$.	
		OR	
Q.4	(a)	Explain Bouschinger effect.	03
	(b)	Write a short note on octahedral stresses.	04
	(c)	Explain the stress integration of Drucker - Prager material model	07
Q.5	(a)	What do you mean by principal of super position?	03
	(b)	Explain the general nature of yield locus.	04
	(c)	Derive Saint Venant's equations of compatibility.	07
		OR	

www.FirstRanke	r.com
	04

(c) Explain Normality, Convexity and Uniqueness for an elastic solid. 07

(b) Explain the work hardening of a material.

www.firstRanker.com