FirstRanker.com ranker's choice

www.FirstRanker.com

Enrolment.PirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018 Subject Code: 2172007

Date: 03/12/2018

Subject Name: Modern Control Systems	
Time: 10:30 AM TO 01:00 PM	
Instructions:	

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

- Using suitable block diagram, explain ON-OFF control systems. 03 **Q.1** (a) Using suitable block diagrams, explain disturbance signals and their effects 04 **(b)**
 - on the control systems? List various characteristics of feedback control systems and explain any two 07 (c)
 - of them using block diagram and mathematical equations.
- Q.2 Define (i) centroide (ii) asymptotes (iii) dominant pole 03 (a)
 - How locations of closed-loop pole decide the transient response of the 04 **(b)** system? Explain using suitable examples.
 - What is lag compensator? What are the effects of lag compensator? Explain 07 (c) design steps for design of lag compensator using root locus technique.

OR

For the control system represented by block diagram in Figure 1, design a 07 (c) lead compensator using root locus technique, such that wn=4 rad/sec and damping ratio = 0.5 for the compensated system.

(a) List the advantages of frequency domain analysis of a control system. Q.3

- With suitable diagrams define (i) Phase crossover frequency (ii) Gain **(b)** 04 crossover frequency (iii) Phase margin (iv) gain margin.
- A unit step input is applied to a unity feedback control system having open (c) 07 loop transfer function

$$\frac{K}{s(1+sT)}$$

Determine the value of K and T to have Mp=20% and resonant frequency wr= 6 rad/sec. Calculate the resonant peak (Mr).

OR

List various effects of adding a pole in a given control system. Q.3 **(a)** 03 Explain various effects of phase lead compensation. 04 **(b)** Explain design procedure to design phase lead compensation using bode plot 07 (c) technique. List the advantages of state space approach of analyzing the control systems. **Q.4** 03 (a) Draw and explain block diagram of a linear system in state variable form for 04 **(b)**

03

FirstRanker.com

www.FirstRanker.com

A system is described by the following differential equation. Represent the 07 (c) system in state space.

$$\frac{d^3x}{dt^3} + 3\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = u_1(t) + 3u_2(t) + 4u_3(t)$$

And outputs are:

$$y_1 = 4\frac{dx}{dt} + 3u_1$$
$$y_2 = \frac{d^2x}{dt^2} + 4u_2 + u_3$$
OR

Q.4	(a)	Define (i) state variables (ii) state vector (iii) state space	03
	(b)	Compute state transition matrix for $A = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$	04

- <u>۱</u>0 27 Explain Taylor series expansion for computing the state transition matrix. 07 (c)
- For sampled data control system, explain the effect of sampling period on 03 Q.5 (a) steady state error.
 - Derive solution of state equation using Laplace transform method **(b)**
 - (c) Using suitable block diagram, explain sampling process of a continuous time 07 system.

OR

Q.5 Explain observability for a state space system using suitable block diagram. 03 **(a)**

- Using suitable block diagram, explain pulse transfer function of systems in 04 **(b)** series.
- (c) Determine the stability of a sampled data control system having following 07 characteristic polynomial

$$2z^4 + 3z^3 + 2z^2 - z + 1 = 0$$

www.FirstRanker.com

04