

www.FirstRanker.com

Seat No.: _____ Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018

Subject Code: 2172409 Date: 29/11/2018

Subject Name: Digital Signal Processing for Power Electronics

Time: 10:30 AM TO 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- If $h(n) = (0.2)^n u(-n) + (3)^n u(-n)$ will it be stable? 03 Q.1 (a)
 - **(b)** For $x(n) = \{-1,0,1,2,1,0,1,2,1,0,-1\}$, Plot x(n) & find $X(e^{jw})$ at w = 0. 04
 - (c) Determine and plot the response of an LTI system whose input x(n) 07 and impulse response h(n) is given by $x(n) = \{\underline{1}, 2, -1, -2\}$ & $h(n) = \{ 1,2,3,4 \}.$
- Q.2 (a) Enlist application of DSP for power electronics field. 03
 - **(b)** How pipelining improve the computational speed? 04
 - (c) An LTI system has impulse response $h(n) = 5(-1/2)^n u(n)$. Determine 07 Fourier transform to find the output of this system when the input is $x(n) = (1/3)^n u(n)$.

OR

Find the 4- point DFT of the sequence $x(n) = \{1,0,2,1\}$. **07** (c)

Give difference between linear and circular convolution. O.3 (a) 03

Find the IDFT of $Y(k) = \{1,0,1,0\}.$ 04 **(b)**

(c) Define sampling. State and explain sampling theorem. **07**

OR

Q.3 (a) State relation between DFT and Z-transform. 03

(b) Discuss frequency spectrum using DFT. 04 What is aliasing? **07** (c)

Given $x(t) \stackrel{\Gamma^{1}}{\longleftrightarrow} X(w)$. For the spectrum of the continuous-time signal, shown in Fig.1, consider the three cases $f_s = 2f_x$; $f_s > 2f_x$ and f_s

< 2f_x; draw the spectra, indicating aliasing.

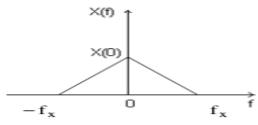


Fig1.

- Q.4 (a) What are the basic elements used to construct block diagram of a 03 discrete time system?
 - (b) (i) Evaluate $\delta(n-1)^* \delta(n+1)$. Plot the resultant sequence. (ii) Prove that $\delta(n) = u(n) u(n-1)$.
 - (c) Consider a LTI system with system function as follows: $H(z) = (1+2z^{-1}+z^{-2}) / (1-0.75 z^{-1}+0.125 z^{-2})$. Obtain second order parallel form structure.

OR

- Q.4 (a) Explain one-sided Z-transform.
 - (b) Classify various signals used for signal processing. 04
 - (c) Sketch the cascaded form structure of the FIR system given by 07 difference equation y(n) + y(n-1) + 0.25y(n-2) = x(n).
- Q.5 (a) Discuss the effect of quantization.
 - **(b)** What is the difference between von Neumann and Harvard **04** architecture?
 - (c) Discuss the concept of zero input limit cycle oscillation. How this can be eliminated?

OR

- Q.5 (a) What are the different formats of fixed point representation?
 - (b) Draw only the block diagram of basic generic hardware architecture 04 for digital signal processor
 - (c) Explain DIT- FFT algorithm using signal flow graphs for N= 4. 07
