GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-III (OLD) EXAMINATION - WINTER 2018
Subject Code: 130101
Subject Name:Fluid Mechanics
Time:10:30 AM TO 01:00 PM
Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 1 (a) State and explain Pascal's law. 07
(b) What is capillary effect? Derive equation for capillary rise and fall. 07
Q. 2 (a) What is meta-centric height? Derive an expression for meta-centric height of a floating body. 07
(b) A circular plate of diameter 1 m is immerged in a liquid of specific gravity 0.85 with its plane 07 making an angle of 35° with the horizontal. The centre of the plate is at a depth of 2.5 m below the free surface. Calculate (i) total pressure force on one side of the plate, and (ii) location of the centre of pressure.

OR

(b) Define total hydrostatic force and centre of pressure. Derive an expression for the force exerted on a sub-merged vertical plane surface by the static liquid and locate the position of centre of pressure.
Q. 3 (a) Describe the Buckingham's π method for dimensional analysis 07
(b) The efficiency η of a fan depends on the density ρ, the dynamic viscosity μ of the fluid, the 07 angular velocity ω, diameter D of the rotor and discharge Q . Express η in terms of dimensionless parameters.

OR

Q. 3 (a) Prove that in a 2-D fluid flow the stream lines are aways perpendicular to equipotential lines.
(b) A fluid flow field is given by $V=x^{2} y i+y^{2} z j-\left(2 x y z+y z^{2}\right) k$, show that it is case of possible steady 07 incompressible fluid flow, calculate resultant velocity at point $(2,1,3)$
Q. 4 (a) Derive an expression for the discharge of water over the V notch with usual notation 07
(b) A horizontal Venturimeter $60 \mathrm{~cm} \times 30 \mathrm{~cm}$ is used to measure the water flow through a pipe. 07 The head causing the flow is measured as 14 cm of Hg by mercury U tube manometer. Find the flow rate in liters $/ \mathrm{min}$. Take $\mathrm{Cd}=0.95$
OR
Q. 4 (a) Explain rotational and irrotational flow with neat sketches. 07
(b) A pipe A 350 mm in diameter, branches into two pipes (B and C) of diameters 200 mm and 07 through pipe A, and (ii) velocity in pipe C if the average velocity in pipe B is $1.5 \mathrm{~m} / \mathrm{s}$.
Q. 5 (a) Explain various flow losses in pipes. 07
(b) Derive Darcy Weisbach equation for the co-efficient of friction in pipes 07
OR
Q. 5 (a) Explain the nature of propagation of disturbance in compressible flow when mach number less 07 than one, is equal to one and is more than one.
(b) Derive an expression for the velocity distribution for viscous flow through a circular pipe. Also 07 sketch the velocity distribution and shear stress distribution across a section of the pipe.

