

www.FirstRanker.com

Enrolment.FirstRanker.com

## ГΥ

| GUJARAT TECHNOLOGICAL UNIVERSITY<br>BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2018 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|---------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Subject                                                                               | Code:                            | 2173514/2173509 Date: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/11/2018 |  |
| Subject<br>Time: 1(                                                                   | Name<br>):30 AN                  | : Environmental Reaction Engineering<br>A TO 01:00 PM Total Ma                                                                                                                                                                                                                                                                                                                                                                                                                                          | arks: 70  |  |
| 1.<br>2.<br>3.                                                                        | Attem<br>Attem<br>Make<br>Figure | pt all questions.<br>suitable assumptions wherever necessary.<br>es to the right indicate full marks.                                                                                                                                                                                                                                                                                                                                                                                                   |           |  |
|                                                                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MARKS     |  |
| Q.1                                                                                   | (a)<br>(b)                       | Define: 1) space time, 2) space velocity, 3) Recycle ratio<br>Discuss size comparison of mixed flow reactor and plug flow<br>reactor for n <sup>th</sup> order reaction.                                                                                                                                                                                                                                                                                                                                | 03<br>04  |  |
|                                                                                       | (c)                              | Derive the process design equation for mixed flow reactor.                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07        |  |
| Q.2                                                                                   | (a)<br>(b)                       | Discuss advantages and disadvantages of batch reactor.<br>Justify that CSTRs connected in parallel behave as one single<br>CSTR of the same total volume.                                                                                                                                                                                                                                                                                                                                               | 03<br>04  |  |
|                                                                                       | (c)                              | In an isothermal batch reactor, the conversion of a liquid<br>reactant A is 70% in 13 minutes. Find the space time and space<br>velocity necessary to effect this conversion in a plug flow<br>reactor. Consider first order kinetics.                                                                                                                                                                                                                                                                  | 07        |  |
|                                                                                       | (c)                              | <ul> <li>A homogeneous liquid phase reaction with the stoichiometry and the kinetics A→ S, -r<sub>A</sub> = KC<sub>A</sub><sup>2</sup> takes place with 50% conversion in a MFR.</li> <li>1) Find the conversion if this reactor is replaced by another MFR having volume 6 times that of the original reactor or other parameters remain same.</li> <li>2) Find the conversion if the original reactor is replaced by plug flow reactor of the same size. All other parameters remain same.</li> </ul> | 07        |  |
| Q.3                                                                                   | (a)                              | Explain instantaneous fractional yield and overall fractional yield                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03        |  |
|                                                                                       | <b>(b)</b>                       | For following parallel reactions<br>$A \longrightarrow R$<br>$A \longrightarrow S$<br>If R is the desired product and the order of reaction is same for<br>both the reactions then how can one get more production of R?                                                                                                                                                                                                                                                                                | 04        |  |
|                                                                                       | (c)                              | Prove that N number of same sized mixed flow reactors in series<br>can be approximated as a plug flow reactor.<br><b>OR</b>                                                                                                                                                                                                                                                                                                                                                                             | 07        |  |
| Q.3                                                                                   | (a)                              | The reactor setup consists of three plug flow reactors in two<br>parallel branches. Branch D has a reactor of volume 60 liters<br>followed by a reactor of volume 40 liters. Branch E has a<br>reactor of volume 50 liters. What fraction of the feed should go<br>to branch D?                                                                                                                                                                                                                         | 03        |  |
|                                                                                       | (b)                              | For reactions in series<br>$A \longrightarrow R \longrightarrow S$                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |  |



ranker's choiff the desired production of the stanker plain which methods first Ranker.com

- be used?
- (c) Reactant A in liquid produces R and S by the following 07 reaction:

A S R

Both these reactions are first order.

A feed with  $C_{A0} = 1$ ,  $C_{R0} = 0$  and  $C_{S0} = 0$  enters in two mixed flow reactors in series ( $\tau_1 = 2 \min, \tau_2 = 5 \min$ ). The composition in the first reactor is  $C_{A1} = 0.40$ ,  $C_{R1} = 0.40$  and  $C_{S1} = 0.2$ . Find the composition leaving the second reactor.

- **Q.4** (a) Define mean residence time and variance with equation.
  - (b) Explain pulse input experiment for RTD studies.
  - (c) The data given below represent a continuous response to a pulse input into a closed vessel which is to be used as a chemical reactor. Calculate the mean residence time of fluid in the vessel and tabulate and construct the E curve.

| t, min | C <sub>pulse</sub> , g/l |  |  |
|--------|--------------------------|--|--|
| 0      | 0                        |  |  |
| 5      | 3                        |  |  |
| 10     | 5                        |  |  |
| 15     | 5                        |  |  |
| 20     | 4                        |  |  |
| 25     | 2                        |  |  |
| 30     | 1                        |  |  |
| 35     | 0                        |  |  |
|        |                          |  |  |

Q.4 (a) What are the causes of non-ideal flow in reactor?

- (b) Explain relationship between E and F curve.
- (c) A sample of tracer hytane was injected as a pulse into a vessel (to be used as a reactor) and the effluent concentration is measured as a function of time. The following data are obtained:

| t,min | $C (g/m^3)$ |
|-------|-------------|
| 0     | 0           |
|       | 1           |
| 2     | 5           |
| \$ 3  | 8           |
| 4     | 10          |
| 5     | 8           |
| 6     | 6           |
| 7     | 4           |
| 8     | 3           |
| 9     | 2.2         |
| 10    | 1.5         |
| 12    | 0.6         |
| 14    | 0           |
|       |             |

Construct the C and E curves and determine the fraction of material leaving the vessel that has spent between 3 and 6 min in the vessel.

03 04

03

04

07



- 04 Differentiate between packed bed reactor and fluidized bed **(b)** reactor.
- (c) Write the sequence of steps according to shrinking core model for 07 gas-solid non-catalytic reactions. Draw a schematic figure to show these steps when reaction  $A(g) + bB(s) \rightarrow products$  takes place on a solid spherical particle of unchanging size.

## OR

- Differentiate constant volume and variable volume batch **(a)** 03 Q.5 reactor.
  - Explain types of catalyst deactivation. 04 **(b)**
  - Qualitative discussion about product distribution in reactions in 07 (c) parallel for two reactant.

\*\*\*\*

www.FirstRanker.com