

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2018

Subject Code: 2173515	Date: 29/11/2018
Subject Name: Design Of Air Pollution Control System	em And Air Quality
3.6. 1.10	

Modeling

Time: 10:30 AM TO 01:00 PM	Total Marks: 70

Instructions:

1. Attempt all questions.

process.

2. Make suitable assumptions wherever necessary.

		take suitable assumptions wherever necessary.	
	3. F	igures to the right indicate full marks.	MARKS
			WIAKKS
Q.1	(a)	Write a note on hydrodesulphurization of coal.	03
	(b)	Explain Hybrid (Lagrangian/Eulerian) Models.	04
	(c)	A furnace is burning at 12 tons of 2.5% Sulphur coal/hr with an	07
		emission rate of 151 g/s. The following exist: H=120m, u=2m/s,	
		Y=0. It is one hour before sunrise, and the sky is clear. Find the	
		downwind ground level SO ₂ concentration at X=500 m, Y=0 and	
		Z=0.(use table 3.3)	
Q.2	(a)	Draw a neat figure of cyclone separator and explain it's working.	03
	(b)	Derive an equation of stocks law for gravity settler.	04
	(c)	Explain all methods of NOx removal.	07
		OR	
	(c)	Write a short note on air models.	07
Q.3	(a)	Explain working and principle of Electrostatic Precipitator.	03
	(b)	Explain working of gravity settler with appropriate figure.	04
	(c)	The traffic density for a highway is 1200 vehical/hr and average	07
		vehicle speed is 80 km/hr. The average vehicle speed is 80 km/hr.	
		The average carbon monoxide emission is 40g/s. Estimate the	
		carbon monoxide concentration 250 m and 500 m downwind on	
		highway if wind speed normal to highway will be 2 m/s.(use table	
		3.3)	
0.0		OR	0.2
Q.3	(a)	Explain cleaning mechanism in bag filter.	03
	(b)	Explain the Gaussian model's assumptions and limitations.	04
	(c)	Explain natural removal methods for sulphur from atmosphere.	07
Q.4	(a)	Explain methods of SOx removal from crude oil extraction.	03
	(b)	Write a note on Alkalized Alumina process.	04

OR

Q.4 (a) Following abbreviations stands for: VOC,PPM, POP 03

(c) Write a short note on Sea board, Girbotal process and Clause

- (b) Explain Chemico process with proper flow sheet. 04
- (c) A plant has a 60,000acfm gas stream containing a hazardous dust with an estimated drift velocity of 0.250ft/s. The minimum required efficiency is 99.80%. Assume that the Deutsch–Anderson (DA) equation applies. LT Associates has proposed (as a control device) a tubular-type precipitator with tubes 10 inch in diameter and 10ft height. How many tubes are needed? Approximate the volume occupied by the tubes.

07

07

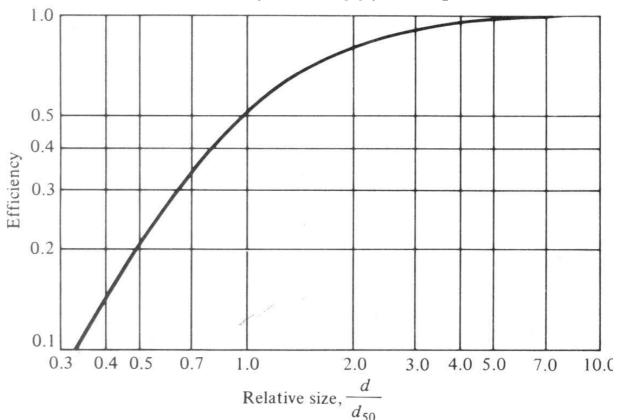
www.FirstRanker.com

www.FirstRanker.com

Q.5	(a)	What is avalanche mechanism?	03
	(b)	Write a note on photochemical model.	04
	(c)	Explain all steps of graphical method of cyclone seperator.	07
		OR	
Q.5	(a)	Explain ventury scrubber.	03
	(b)	Write a note on catalytic processes for sulphur removal.	04
	(c)	Estimate the cut diameter and overall collection efficiency of a cyclone	07
		given the particle size distribution of dust from cement kiln. Particle size	

distribution and other pertinent data are given below. Gas viscosity = 0.02 Cp;

Specific Gravity of the particle = 3.0;


Inlet gas velocity of cyclone = 48 ft/sec;

Effective number of turns within cyclone = 5;

Cyclone diameter = 8 ft; Cyclone inlet width = 2 ft.

$\rho_p = 187.2 \text{ lb/f}$	t								
Average	1	5	10	15	20	25	30	35	>40
Partical									
Size, dp (µm)									
(µm)									
Wt	9	15	15	25	10	10	6	3	7
Percentage									

Standard efficiency curve for a cyclone separator

www.FirstRanker.com

Table-3.3

Class	A.	x_1 (metres)	$x \le B$	$\leq x_1$	x_2 (metres)	$\frac{x_1 \leqslant x}{B}$	- The state of the	
A	0.40	250	0,125	1.03	500	0.00883	1.51	
В	0,295	1000	0.119	0.986	10000	0.0579	1.09	
c	0.20	1000	0.111	0.911	10000	0.111	0.911	
D	0.13	1000	0.105	0.827	10000	0.392	0.636	
E	0.098	1000	0.100	0.778	10000	0.373	0.587	

MMM FirstPainker.com